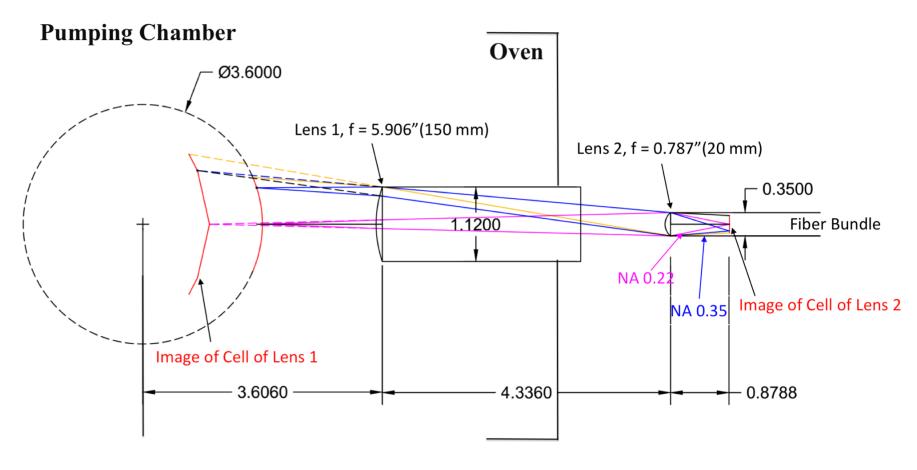

# <sup>3</sup>He Target: EPR Status

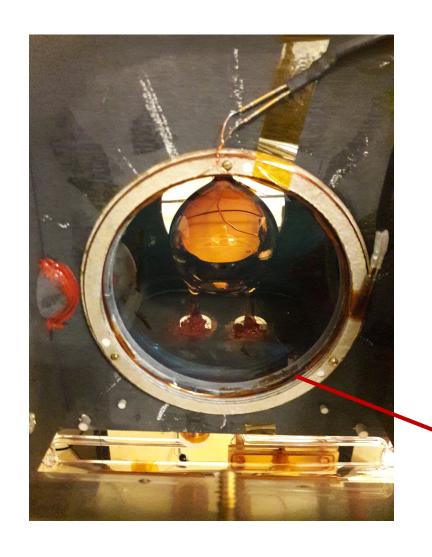
Melanie Rehfuss
A1n/d2n Collaboration Meeting
Dec. 10th, 2018

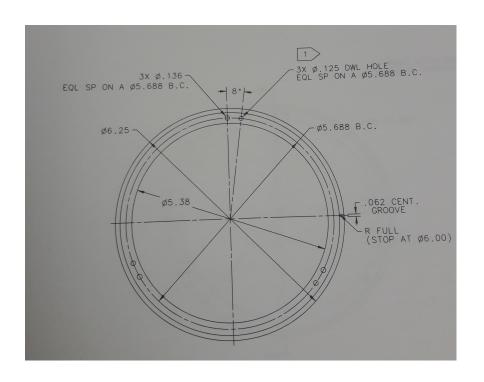
#### **Outline**


- D2 Light Collection Design
- New EPR Coil Mount for Larger Oven
- EPR Coil Optimization
- To-Do

#### D2 Light Collection Design (Raytum Photonics)




- Current EPR tests have been done with the Photodiode (PD) sitting close to the oven
  - During the actual experiments, the PD will be placed away from the target area (~4 m) to avoid radiation damage
- The lens system is developed to maximize fluorescence detection


#### D2 Light Collection Design (Raytum Photonics)



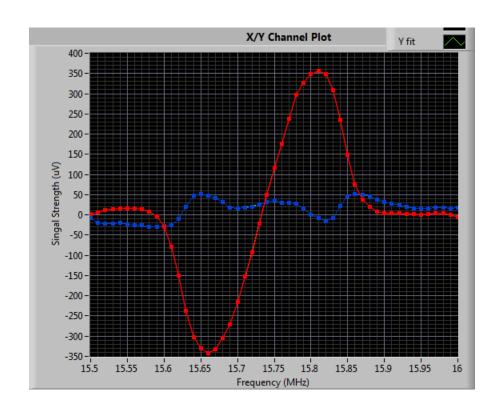
- Current Pin Photodiode (Newport) has large active area (~ 11mm) but poor responsivity near D2 line (780 nm)
- Avalanche Photodiode
   (Thorlabs) has smaller
   active area (~ 1 mm),
   but would increase
   responsivity ~ 40x
  - Another lens will be fabricated at the exit end of the fiber link to focus it onto the APD

#### EPR Coil Mount on ~ 5" Oven





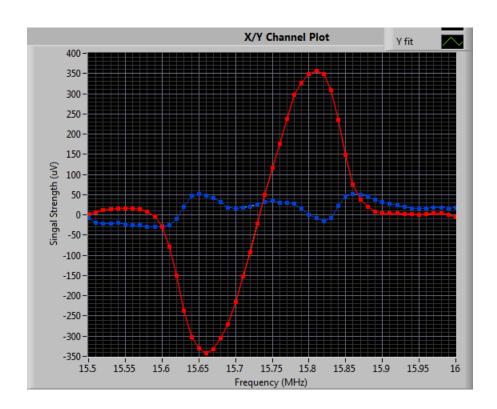
 Mount will be modified to include EPR RF coil underneath NMR RF coil (~ 5.38")


#### EPR RF Coil Optimization Studies: Current (mA)

- Goal: optimize coil impedance to reach maximum RF signal at the pumping chamber
- Coil diameters vary from 5.125" to 5.375", made with 24 AWG wire, -5 dBm RF power @ 15.730 MHz

| N (# of turns) | R(Ω) | L(μH) | Current (mA) at RF Gain |     |     |     |
|----------------|------|-------|-------------------------|-----|-----|-----|
|                |      |       | 20%                     | 40% | 60% | 80% |
| 2              | 0.16 | 10.2  | 88                      | 152 | 230 | 310 |
| 3              | 0.18 | 12.1  | 86                      | 146 | 220 | 300 |
| 4              | 0.23 | 14.4  | 84                      | 144 | 216 | 292 |
| 5              | 0.28 | 18.2  | 78                      | 140 | 212 | 288 |
| 6              | 0.32 | 22    | 84                      | 140 | 208 | 286 |
| 7              | 0.38 | 25.8  | 76                      | 130 | 194 | 264 |
| 9              | 0.47 | 36.4  | 78                      | 134 | 198 | 272 |
| 12             | 0.77 | 54.4  | 78                      | 132 | 198 | 268 |
| 18             | 1.04 | 110.4 | 78                      | 130 | 194 | 264 |
| 30             | 1.13 | 264   | 84                      | 138 | 206 | 276 |

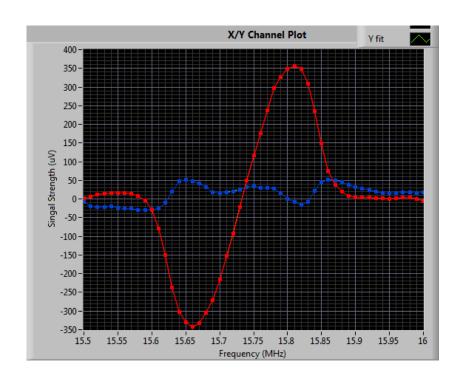
## EPR RF Coil Optimization Studies: Amplitude (μV)

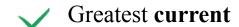

- Goal: optimize coil impedance to reach maximum RF signal at the pumping chamber
- Corresponding EPR FM sweeps: -5 dBm RF power, 1 mV lock-in sensitivity (N = 2 below)

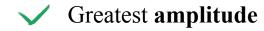


| N (# of turns) | R(Ω) | L(μH) | Signal Strength (uV) at RF Gain |     |     |     |
|----------------|------|-------|---------------------------------|-----|-----|-----|
|                |      |       | 20%                             | 40% | 60% | 80% |
| 1              | 0.13 | 9     | 74                              | 225 | 300 | 354 |
| 2              | 0.16 | 10.2  | 90                              | 240 | 330 | 350 |
| 3              | 0.18 | 12.1  | 50                              | 140 | 250 | 300 |
| 4              | 0.23 | 14.4  | 40                              | 68  | 140 | 225 |
| 5              | 0.28 | 18.2  | 18                              | 23  | 60  | 110 |
| 6              | 0.32 | 22    | 25                              | 30  | 64  | 115 |

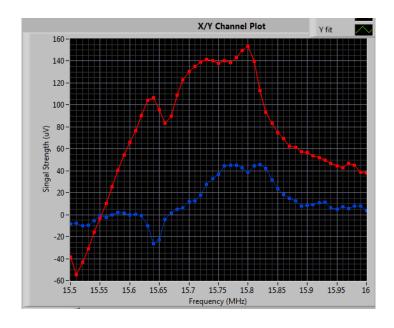
## EPR RF Coil Optimization Studies: Slope (μV/kHz)


- Goal: optimize coil impedance to reach maximum RF signal at the pumping chamber
- Corresponding EPR FM sweeps: -5 dBm RF power, 1 mV lock-in sensitivity (N = 2 below)

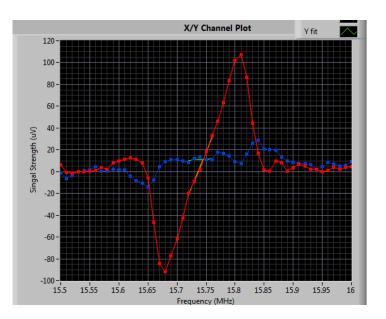




| N (# of turns) | R(Ω) | L(μH) | Slope (μV/kHz) at RF Gain |      |      |      |
|----------------|------|-------|---------------------------|------|------|------|
|                |      |       | 20%                       | 40%  | 60%  | 80%  |
| 1              | 0.13 | 0.46  | 0.94                      | 3.64 | 5.96 | 7.4  |
| 2              | 0.16 | 1.84  | 1.08                      | 4.18 | 6.06 | 6.84 |
| 3              | 0.18 | 3.9   | 1.04                      | 1.96 | 4.62 | 5.97 |
| 4              | 0.23 | 6.6   | 0.36                      | 0.64 | 1.66 | 3.76 |
| 5              | 0.28 | 9.8   | 0.31                      | 0.25 | 0.69 | 1.33 |
| 6              | 0.32 | 13.6  | 0.41                      | 0.48 | 0.65 | 1.63 |

#### EPR RF Coil Optimization Studies


- Corresponding EPR FM sweeps: -5 dBm RF power, 1 mV lock-in sensitivity
- $\times$  Greater-turn coils produce poor FM spectra (N = 30 right)
- $\checkmark$  Fewer-turn coils (N=2 in this study, N = 4 found by Kai) confirmed to perform best



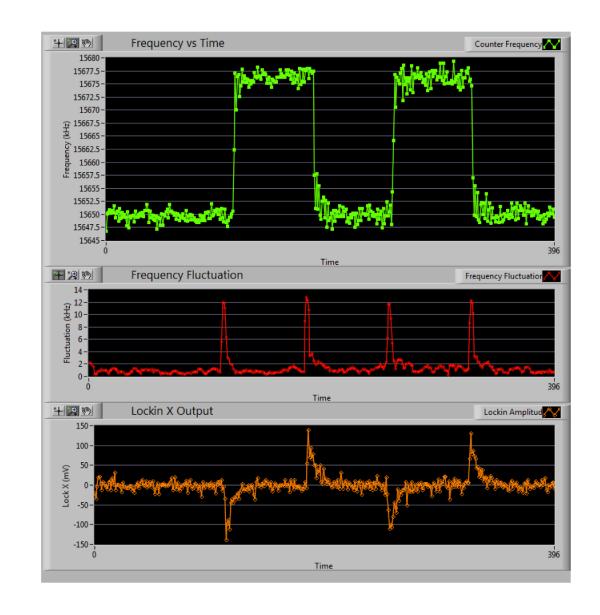









N=30 (above) and N=5 (below)




Dec. 10th, 2018

A1n/d2n Collaboration Meeting

#### TO-DO

- > Test Avalanche Photodiode with current setup
- ➤ Test coils with new mount and completed fiber bundle with APD to choose the optimal one
  - Clear FM sweep (lock to resonant frequency)
  - ➤ Clear EPR-AFP (at both low and high <sup>3</sup>He polarization)
- Optimize EPR-AFP
  - $\triangleright$  EPR coil noise currently at  $\sim$  5 kHz (too high)
  - Study polarization loss
- ➤ Goal is to finalize EPR by the end of January, 2019





## Thank you!