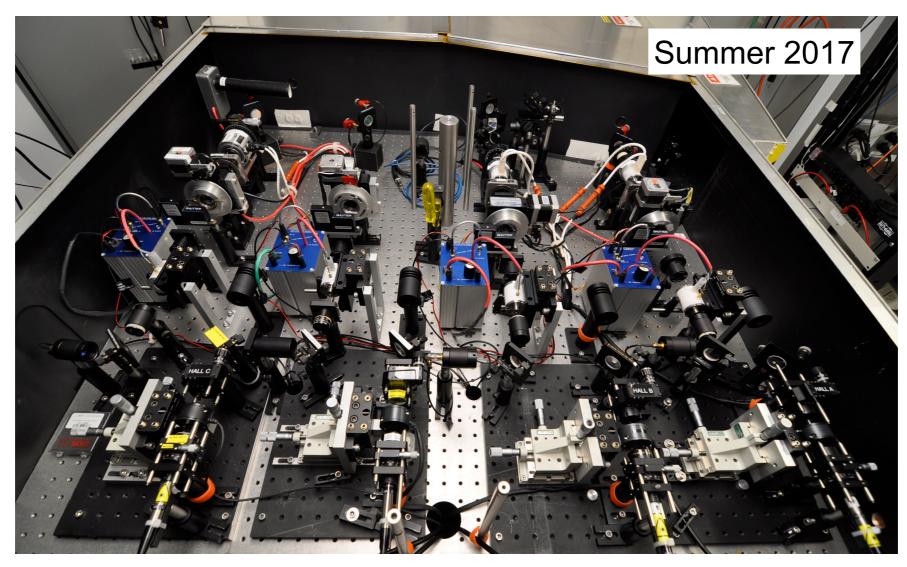
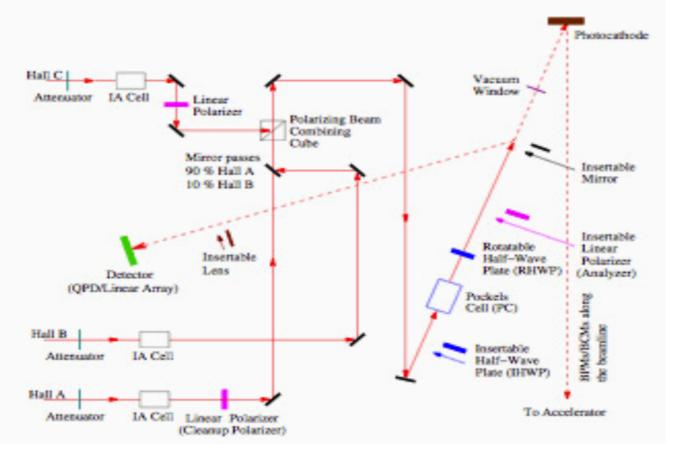
# Fall 2019 Beam Helicity control

Ciprian Gal UVa


# CREX is similar in requirements to HAPPEX2

| Experiment                                | Energy | Pol  | I    | Target                        | $A_{\rm PV}$ | Charge  | Position | Angle         | Size Diff               |
|-------------------------------------------|--------|------|------|-------------------------------|--------------|---------|----------|---------------|-------------------------|
|                                           |        |      |      |                               | Expected     | Asym    | Diff     | Diff          | $(\delta\sigma/\sigma)$ |
|                                           | (GeV)  | (%)  | (µA) |                               | (ppb)        | (ppb)   | (nm)     | (nrad)        |                         |
| HAPPEx-I (Achieved)                       | 3.3    | 38.8 | 100  | <sup>1</sup> H (15 cm)        | 15,050       | 200     | 12       | 3             |                         |
|                                           |        | 68.8 | 40   |                               |              |         |          |               |                         |
| G0-Forward (Achieved)                     | 3      | 73.7 | 40   | <sup>1</sup> H (20 cm)        | 3,000-40,000 | 300±300 | 7±4      | 3±1           |                         |
| HAPPEx-II (Achieved)                      | 3      | 87.1 | 55   | <sup>1</sup> H (20 cm)        | 1,580        | 400     | 2        | 0.2           |                         |
| HAPPEx-III (Achieved)                     | 3.484  | 89.4 | 100  | <sup>1</sup> H (25 cm)        | 23,800       | 200±10  | 3        | $0.5{\pm}0.1$ |                         |
| PREx-I (Achieved)                         | 1.056  | 89.2 | 70   | <sup>208</sup> Pb<br>(0.5 mm) | 657±60       | 85±1    | 4        | 1             |                         |
| QWeak-I (Achieved)                        | 1.155  | 89   | 180  | <sup>1</sup> H (35 cm)        | 281±46       | 8±15    | 5±1      | 0.1±0.02      |                         |
| QWeak (Analysis In<br>Progress)           | 1.162  | 90   | 180  | <sup>1</sup> H (35 cm)        | 234±5        | <100±10 | <2±1     | <30±3         | $< 10^{-4}$             |
| PREx-II/CREx (To Be<br>Scheduled, FY18+?) | 1      | 90   | 70   | <sup>208</sup> Pb<br>(0.5mm)  | 500±15       | <100±10 | <1±1     | <0.3±0.1      | $< 10^{-4}$             |
| MOLLER (To Be Sched-<br>uled, FY21+?)     | 11     | 90   | 85   | <sup>1</sup> H (150 cm)       | 35.6±0.74    | <10±10  | <0.5±0.5 | <0.05±0.05    | $< 10^{-4}$             |

#### \*\*(A. Freyberg Aug 2016 ECT'16)


- The accelerator capability to be able to run PREX/CREX have been achieved in previous parity runs (Qweak, HAPPEX3)
- CREX will have >2x HAPPEX2 asymmetry while the rate will be similar, making it an easier experiment than PREX2
- CREX will need monitor and minimize the charge and position asymmetry
  - This will require careful setup and continuous measurements of these quantities
- Additionally we will perform beam modulation (similar to previous experiments) to understand the detector responses and correct Helicity Correlated Beam Asymmetries

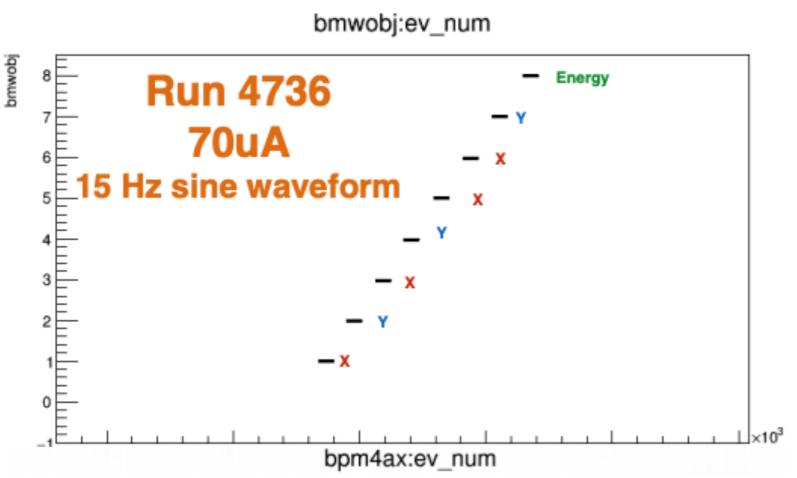
### Injector setup



 After the 12 GeV upgrade the injector laser setup has been updated as well

### Injector setup




Basic schematic is similar to 6 GeV era laser

For parity experiments Aq from one high power hall has been observed to influence Aq of the other hall. CREX will need to control Hall C Aq.

- During CREX we will turn off the IA Cell for hall A (to be able to control the beam charge asymmetry using the PITA voltages on the Pockels Cell)
- Control of the Hall C charge asymmetry will be done through your IA Cell
  - The laser polarization is opposite in Hall A and Hall C (due to how the beams are combined) so a change in the PITA that will minimize Hall A Aq will move the Hall C Aq in the opposite direction
- To be able to monitor and correct the Hall C charge asymmetry we will need a copy of the V2F BCM signal
  - what level of charge asymmetry is acceptable for A1n?

Ciprian Gal

# **Beam modulation**





- During CREX we will perform periodic beam modulations where fast feedback will need to be turned off
  - Feedforward will continue to work (main task is to suppress 60Hz noise which we don't expect a lot of)
- Hall A will employ a set of 8 air core coils that we activate and which perform excursions in position, angle and energy
  - this will run automatically and continuously (for example during PREX1 it was on 86 s every 9m and 36 s giving us about a 10% duty cycle)
- since Hall A will have the energy lock it means that about 2% of the total experimental time we will have energy feedback off

#### $\cdot$ We will provide signals to Hall C to let you know when beam modulation is on and when the energy lock is off

5

# Plan

- We are developing monitoring and feedback tools during the Spring 2019 run
  - Plan is to monitor Hall B charge asymmetry
  - If possible to get the Hall C signal soon it would make things easier for us integrate it as we are developing the system
- For A1n the benefit is that this system will have already been tested and fully commissioned during the summer when we will run PREX2