

Deuteron Electro-Disintegration Experiment (E12-10-003)

Carlos Yero

Spokespeople: Drs. Werner Boeglin and Mark Jones

January 28, 2019

Motivation

 $\mathbf{\overline{M}}$ Study Deuteron at short ranges (< 1 fm).

High momentum transfers probe the Deuteron at smaller distances. Smaller inter-nucleon distances enables one to access the high momentum components of nucleons

Mathebra Extract D(e,e'p)n cross-section beyond 500 MeV/c missing momentum at high Q2

I Extract momentum distributions (not an observable) from cross sections.

D(e,e'p)n Reaction Kinematics

D(e,e'p)n Interactions

Meson-Exchange Currents (MEC)

Isobar Configurations (IC)

Plane Wave Impulse Approximation (PWIA)

Final State Interactions (FSI)

E12-10-003

Initial Analysis Procedure

- Reference Time Cuts
- TDC/ADC Time Window Cuts
- Detector Calibration

Reference Time Cuts: Basic Principle

Reference Time Cuts

Time Window Cuts

HMS Detector Calibration

SHMS Detector Calibration

E12-10-003

H(e,e'p) Analysis:

HMS/SHMS Momentum Corrections and Optimization

Why Optimize H(e,e'p) before Studying the D(e,e'p)n Reaction?

$$P_{\mu}^{(e)} = (E_{b}, \vec{k}_{i}) \qquad P_{\mu}^{(e)} = (E_{e}, \vec{k}_{f}) \\ P_{\mu}^{q} = (E_{b} - E_{e}, \vec{k}_{i} - \vec{k}_{f}) \\ P_{\mu}^{(n)} = (E_{n}, \vec{p}_{miss}) \\ P_{\mu}^{(p)} = (E_{p}, \vec{p}_{f}) \qquad P_{\mu}^{(n)} = (E_{n}, \vec{p}_{miss})$$

$$\vec{q} \equiv \vec{k}_i - \vec{k}_f = \vec{p}_f + \vec{p}_{miss}$$
$$q = p_f \cos(\theta_{pq}) + p_{miss} \cos(\theta_{nq})$$

$$p_{miss} = \frac{|\vec{k}_i - \vec{k}_f| - p_f \cos(\theta_{pq})}{\cos(\theta_{nq})}$$

"At D(e,e'p)n 80 MeV setting, any variation in the electron or proton momentum will have a large impact on the missing momentum as the electron or proton momentum are > 1 GeV/c "

E12-10-003: Original Kinematics

Target	SHMS angle	SHMS momentum	HMS angle	HMS momentum
LH2	12.2 deg	-8.70 GeV/c	37.3 deg	+2.938 GeV/c

Target	SHMS angle	SHMS momentum	HMS angle	HMS momentum	
AI	12.2 deg	-8.70 GeV/c	37.3 deg	+2.938 GeV/c	

Target	SHMS angle	SHMS momentum	HMS angle	HMS momentum	Missing Momentum
LD2	12.2 deg	-8.70 GeV/c	38.896 deg	+2.844 GeV/c	80 MeV

Target	SHMS angle	SHMS momentum	HMS angle	HMS momentum	Missing Momentum
LD2	12.2 deg	-8.70 GeV/c	55.0 deg	+2.194 GeV/c	580 MeV
LD2	12.2 deg	-8.70 GeV/c	58.4 deg	+2.091 GeV/c	750 MeV

Minimum Charge Requirements MET:

	Pm = 580 MeV/c	Pm = 750 MeV/c
Min Charge:	2880 mC	6048 mC
Obtained:	5049 mC	7865 mC

H(e,e'p) Elastics Kinematics Used In Optimization Procedure

RUN	SHMS Momentu m [GeV]	SHMS Angle [deg]	HMS Momentum [GeV]	HMS Angle [deg]	SHMS Delta Range [%]	HMS Delta Range [%]
3288	-8.7	12.194	2.938	37.338	(-6, 2)	(-12,10)
3371	-8.7	13.93	3.480	33.545	(-12, 4)	(-12,10)
3374	-8.7	9.928	2.31	42.9	(3, 8)	(-12,10)
3377	-8.7	8.495	1.8899	47.605	(8, 12)	(-12,10)

HMS Checks:

Is there any correlation between delta and focal plane quantities?

HMS Momentum is below Dipole Saturation (< ~ 4.2 GeV)

Formula is ONLY valid for H(e, e'p) kinematics

$$P_{calc}(E_b, \theta_p) = \frac{2M_p E_b(E_b + M_p)\cos(\theta_p)}{M_p^2 + 2M_p E_b + E_b^2 \sin^2(\theta_p)}$$

$$P_{fr}(E_b, \theta_p, P_{meas}) \equiv \frac{P_{calc}(E_b, \theta_p) - P_{meas}}{P_{meas}}$$

"Fractional Momentum"

HMS Fractional Momentum vs. Focal Plane

Is there any correlation between delta and focal plane quantities? **NO CORRELATIONS OBSERVED !**

Run: 3288

Run: 3371

Run: 3377

HMS Fractional Momentum DATA/SIMC

HMS Central Momentum Correction

D2 Heep Runs: 3288, 3371, 3374, 3377

SHMS Checks:

el

Is there any correlation between delta and focal plane quantities?

Formula assumes HMS momentum is understood.

$$E_{calc}^{(e)} \sim P_{calc}^{(e)} = E_b + M_p - E_{meas}^{(p)},$$

$$E_{meas}^{(p)} = \sqrt{M_p^2 + P_{meas}^{(p)}}$$
Calculated ectron momentum (in HMS)

Is there any correlation between delta and focal plane quantities? CORRELATIONS OBSERVED !

Optimize the SHMS Delta Component

- Reconstructed events at the target are smeared out resulting in poor resolution of Missing Energy, Invariant Mass W, etc.
 - Fit the calculated/measured delta difference vs. focal plane

$$\Delta \delta = \delta_{calc} - \delta_{meas} = D_0 + D_1 x_{fp} + D_2 x'_{fp} + D_3 y_{fp} + D_4 y'_{fp} + f(\mathcal{O}^2)$$

 D_i : matrix coefficients to be minimized

Update optics matrix file with new coefficients.

Optimized SHMS Delta Matrix

Results of HMS/SHMS Momentum Corrections

Results of HMS/SHMS Momentum Corrections

SIMC/DATA Comparison BEFORE HMS/SHMS Optimization

SIMC/DATA Comparison AFTER HMS/SHMS Optimization

Summary

- **H**(e,e'p) Analysis for E12-10-003 ALMOST completed !
- Momentum for D2 kinematics is understood.
- **SHMS Momentum for D2 kinematics is understood.**
- **SHMS** Delta component of optics has been optimized
- SIMC/DATA Yields is currently being studied. (See BackUp Slides)

Thank You!

Questions?

Backup Slides

SIMC Weighted Yield Calculation:

$$\begin{split} Y^{Corr} &= Y^{Uncorr} * \text{FullWeight} \\ \text{Full Weight} &= \frac{N_{norm} * \sigma_{weight} * Q_{charge} * \epsilon_{trk}^{(e)} * \epsilon_{trk}^{(h)} * L.T.}{\text{entries}} \end{split}$$

Live Time and Tracking Efficiency

Trigger Rates

Weighted SIMC/DATA Comparison

Why is SIMC yield much larger than DATA yield for the bottom two runs?

Weighted SIMC/DATA Comparison: CUTS APPLIED, Missing Energy < 40 MeV

Weighted SIMC/DATA Comparison: CUTS APPLIED, HMS Delta (-8,8)%

Weighted SIMC/DATA Comparison: CUTS APPLIED, SHMS Delta (-10,22)%

