Nuclear Dependence in lighter nuclei

Abishek karki MSU

Motivation

Representative plot showing cross-section ratios as function of x measured at different facilities with different beam types and energies

Significant differences in the inelastic structure function(per nucleon) of Fe over deuterium were observed over a large range in Bjorken x

First published measurement of nuclear dependence of F₂ by the European Collaboration in 1983.

More than 35 years still no consensus with its origin.

Motivation

Representative plot showing cross-section ratios as function of x measured at different facilities with different beam types and energies

Significant differences in the inelastic structure function(per nucleon) of Fe over deuterium were observed over a large range in Bjorken x

First published measurement of nuclear dependence of F_2 by the European Collaboration in 1983.

More than 35 years still no consensus with its origin.

EMC effect:

ratio of DIS cross-section is not one

The resulting data is remarkably consistent over a large range of beam energies and measurement techniques.

Region of EMC Effect

Global Properties of EMC Effect

Nuclear dependence

SLAC E139 studied the nuclear dependence of the EMC effect at fixed x

Results:

- → Simple logarithmic A dependence
- → Average nuclear density

Jlab E03-103 was conducted in Hall C, at 6GeV

Measured σ_A/σ_D for ³He, ⁴He, Be, C

• ³He, ⁴He, C EMC effect scales well with density

Jlab E03-103

Results from JLab suggest that EMC Effect does not scale with average nuclear density

Measured σ_A/σ_D for ³He, ⁴He, Be, C

- ³He, ⁴He, C EMC effect scales well with density
- Be does not fit the trend

EMC effect and Local Nuclear density

⁹Be has low average density

- Large components of structure is $2\alpha+n$
- Most nucleons in tight, α-like configuration

EMC effect is driven by **local** rather than *average density*

Local Density

Short Range Correlation

To measure the (relative) probability of finding a correlated pair, ratio of heavy to light nuclei are taken at x>1

If high momentum nucleons in nuclei come from correlated pairs, ratio of A/D should show a plateau

SRCs and Nuclear Density

Jlab data on ratios at x>1 a_2 ratios for:

- Additional nuclei (Cu, Be, Au)
- Higher precision for targets with already existing ratios
- These ratios were taken at the same time as the E03-103

N. Fomin et al, Phys.Rev.Lett. 108 (2012) 092502

Weinstein et al first published the correlation.

This was followed up by the **O. Hen et al** when the Jlab **Be** results became available

This result provides a **quantitative** test of level of **correlation** between the **two effects.**

Jlab E12-10-008

- Detailed studies of the nuclear dependence of F₂ in light nuclei
- -0.2 < x < 0.9
- Up to $Q^2 \approx 15 \text{ GeV}^2$
- Light nuclei: ¹H, ²H, ³He, ⁴He, ^{6,7}Li, ⁹Be, ^{10,11}B, ¹²C
- Medium/Heavy nuclei: Al, ^{40,48}Ca, Ti, ⁵⁴Fe, ^{58,64}Ni, Cu, Ag, Sn, Au, Th
- Data x→ 0.1 will facilitate the comparison of the shape of the EMC Effect on light nuclei

PAC 35 Proposal (2009)

My experiment is small subset of big EMC experiment schedule in Hall C

- Lighter nuclei: ¹**H**, ²**H**, ^{10,11}**B**, ¹²**C**
- All targets were taken at $\theta = 21.035$
- Both spectrometer (SHMS & HMS)
 were used to collect data
- Also took data at x>1 on lighter nuclei
- New measurement of EMC in ^{10,11}B significant for clustering behavior
- 12C was taken only at larger angle to look at Q² dependence of EMC Effect

Courtesy plot from D. Gaskell

Calibration result

Drift Chamber

Calibration result

Drift Chamber

- Here I am only showing the residual from the best two planes which is around ~
 250 microns for SHMS and for HMS is ~270 microns.
- The worst plane has residuals about ~300 microns in SHMS & for HMS it was about ~ 320 microns.

Efficiency Studies: Ngcer

- Clean sample of electron was created by putting cuts on calorimeter and trigger
- Pions can still contaminate out clean sample of electrons
- Efficiency can be calculated from different runs with different π rates (different target), then extrapolate ratio to zero.

π/e ratio was calculated,

$$\pi/e = \frac{Nevents(Cherenkov = 0)}{Nevents(Cherenkov = 10)}$$

This is work under progress

Here I am only showing one representative plot. More studies need to be done for all momentum setting. Also, look for delta dependence for efficiency.

How consistent is efficiency if we change the calorimeter cut.

More updates on overall F2/EMC experiment on next talk by Fernando

Thank you for your attention