

A Measurement of the Nuclear Dependence of the Separated Longitudinal and Transverse Structure Functions in the Resonance Region

Sheren Alsalmí

Kent State University

January,29, 2019

(Basics)

Proton: E94-110 + SLAC

Deuteron

Previous Hall C results

(A-dependence of structure functions)

R is typically a small value (< 1), even a small value of $R_A - R_D$ in absolute value could imply a non-negligible nuclear medium modifications of R

Useful quantity:

 $R = \frac{\sigma_L}{\sigma_T} = \frac{F_L}{2xF_1}$

The nuclear dependence of R can be studied in the form $(R_A - R_D)$

World Data on R

- Only DIS region (no results for resonance region)
- Big Error bars
- Coulomb correction was <u>NOT</u> applied

(A-dependence of R)

$$\left(\frac{d^2\sigma}{dE'd\Omega}\right) = \Gamma(\sigma_T + \epsilon\sigma_L)$$

$$\frac{\sigma_A/\Gamma}{\sigma_D/\Gamma} = \frac{\sigma_T^A}{\sigma_T^D} \left(\frac{1+\epsilon R_A}{1+\epsilon R_D}\right)$$

$$\frac{\sigma_A}{\sigma_D} = \frac{\sigma_T^A}{\sigma_T^D} \left(1 + \epsilon' (R_A - R_D) \right)$$

Linear in ϵ `
 $\epsilon' = \frac{\epsilon}{1 + \epsilon R_D}$

(Search for Nuclear Pions)

- Pions are believed to be the carrier of the nuclear force (Yukawa's theory)
- One way to verify pion existence arises from the measurement of $R = \sigma_L / \sigma_T$
 - Small value of $R \rightarrow spin \frac{1}{2}$ partons
 - Big value of $R \rightarrow$ indication of bosonic constituents
- Pions (spin 0) contribute to the longitudinal structure function (helicity 0) : $\sigma_L(A) = \sigma_L(D) + \delta^{\pi} \sigma_L$
- The pionic enhancement is given by:

$$\frac{\sigma_L(A)}{\sigma_L(D)} = 1 + x \frac{2}{3} f_\pi(\xi) \frac{\nu^2}{(Q^2 + \nu^2)} \underbrace{F_\pi^2(Q^2)}_{F_2^D R_D} (1 + R_D)$$

Pion form factor (drops at high Q²)

х

G. A Miller, Phys. ReV. C 64, 022201

- Measure F_L and F₁ from nuclei in the resonance region
- Investigate quark-hadron duality in nuclei
- Neutrino cross section model development in collaboration with the neutrino community
- Provide information of medium modifications of separated
 F₁ and F_L and R.
- look for nuclear pions

6 GeV L/T Separation Program in Hall C

Experiment	target(s)	Wrange	Q ² range	Status
E94-110	р	RR	0.3 - 4.5	nucl-ex/041002
E99-118	p,d	DIS+RR	0.1 - 1.7	PRL98:14301
E00-002	p,d	DIS+RR	0.25 - 1.5	Analysis finalized/Published Phys.Rev. C97 (2018) no.4, 045204
E02-109	d	RR+QE	0.2 - 2.5	Finalizing d o analysis
E06-009	d	RR+QE	2.0 - 4.0	Cross section, F _L finalized Non-singlet moments paper in collaboration review
E04-001 - I	C,Al,Fe	RR+QE	0.2 - 2.5	Finalizing d σ analysis
E04-001 - I	I C,Al,Fe	RR+QE	2.0 - 4.0	Cross section, RA-Rd finalized for most targets

Experimental Setup

Hall C top view (6 GeV era). High Momentum Spectrometer (HMS) was used to detect scattered electrons, whereas the Short Orbit Spectrometer (SOS) was used largely for charge symmetric background rejection.

Analysis Steps

Trigger Efficiency

$$\epsilon_{trg} = \epsilon_{PRLO} \times \underbrace{\epsilon_{STOF}} + (1 - \epsilon_{PRLO}) \times \underbrace{\epsilon_{3/4}}$$

During the data taking, a discriminator connected to S1X scintillator paddles went bad => the average trigger efficiency dropped

Alternative of average trigger eff. \rightarrow trigger efficiency per paddle

Before replacing the discriminator

After replacing the discriminator

$\delta p/p$ Correction

A common issue when comparing Data to Monte Carlo, the Data/MC yield ratio vs $\delta p/p$ has always similar shape (overfit?)

Cross Section

In order to extract the inclusive cross section, some necessary pieces of

information are needed:

(C) E = 4.6286 GeV , θ = 10.65°

[C] E = 1.2044 GeV

[C] E = 2.3466 GeV

[Fe] E = 3.4889 GeV

[Fe] E = 2.3469 GeV

Rosenbluth Separation

LT Data

Fixed W², Q² range = Q² +/- 20 %

Rosenbluth Separation

Rosenbluth Separation

σ_T ratio

Systematics

Quantity	Uncertainty
Scattering Angle Offset q	0.35 mrad
Scattering Energy Offset E'	$4 \ge 10^{-4} \text{ GeV}^2$
Charge Symmetric Background	(0.05% - 2%)
Calorimeter Efficiency	0.05 – 0.12%
Cerenkov Efficiency	0.04 %
Trigger Efficiency	0.3%
Optics	0.6 %
Acceptance	0.4%

- Fully estimate the systematics (correlated)
- Finalize R_C R_{Fe}
- Search for nuclear pions
- Iterate the model to agree with data, and evaluate the model dependency

Thank You!

Backup slides

Coulomb Correction

* When approaching the target, the electron's energy will be affected by the Coulomb field generated by the target nucleus.

* The incoming electron will accelerate (decelerate) as it gets close to (far from) the nucleus
* One efficient method to approximate the Coulomb correction to the exact calculation is the Effective Momentum Approximation (EMA)

$$E \rightarrow E + V_{eff}$$
$$E_p \rightarrow E_p + V_{eff}$$

taking the measured σ_L 's to search for nuclear pions requires dealing/ estimating carefully the correlated systematics. (can be done, but is there a faster / easier way?)

Measured R_{C} – R_{Fe}

Miller's predictions

$$R_C - R_{Fe} = \frac{\sigma_L^C}{\sigma_T^C} - \frac{\sigma_L^{Fe}}{\sigma_T^{Fe}}$$

$$= \frac{\sigma_L^C}{\sigma_T^C} \big(1 - \frac{\sigma_L^{Fe} / \sigma_T^{Fe}}{\sigma_L^C / \sigma_T^C}\big)$$

$$R_C - R_{Fe} = R_C \left(1 - \frac{\sigma_T^C}{\sigma_T^{Fe}} \times r^{miller}\right)$$

Measured

