Generalized Polarizabilities of the proton with Virtual Compton Scattering

Hall C experiment E12-15-001

Marie Boër, Temple University, on behalf of

H. Atac, A. Camsonne*, N. Deokar, B. Duran, S. Jia, M. Jones*, S. Joosten, R. Li,

Z.E. Meziani, M. Paolone*, M. Rehfuss, N. Sparveris*, et al (*cospokesperson)

January 29, 2019 Hall C collaboration meeting

OUTLINE

- 1) Motivations: Generalized Polarizabilities and Virtual Compton Scattering
- 2) Models and interpretations
- 3) Hall C E12-15-001 experiment
- 4) Projections

Motivations

The nucleon has an internal structure

→ how does it behaves under an external electromagnetic field?

Polarizabilities, α , β accessible in Real Compton Scattering: $q^2 = q'^2 = 0$

electric: sensitive to charges in the nucleon, ability to form a dipole \rightarrow value of α , β : rigidity of the nucleon. much smaller than nucleon dimension (strong binding)

magnetic: spin response of the nucleon to a changing EM field (high beam energy) \rightarrow value of β vs α : diamagnetic and paramagnetic relative contributions (opposite direction)

Generalized polarizabilities, accessible in Virtual Compton Scattering: $q^2 < 0$, $q'^2 = 0$

 $\Rightarrow \alpha_{_{F}}(Q^2)$ and $\beta_{_{M}}(Q^2)$, generalization of polarizabilities as a function of the scale Q^2

 \Rightarrow Access densities of electric charge and magnetization in the nucleon, disformed by EM field

 \Rightarrow can be related to form factors, but distortion due to EM field

Scalar Polarizablities

Response of internal structure to an applied EM field

Virtual Compton Scattering and Bethe-Heitler

Reaction: e P → e' P' y = Bethe-Heitler (BH) + Virtual Compton Scattering (VCS)

- unpolarized cross section depends on 4 independent variables
- depend on virtual photon polarization ϵ
- 2 angles: Φ , $\Theta_{cm} \rightarrow \Phi$ dependence on interference term allows for extracting GPs
- VCS amplitude real below π threshold, complex above (on shell resonances)

Methods to extract the scalar GPs

Measurement: unpolarized cross section,

asymmetries from cross sections at opposite angles \rightarrow

$$A_{(\phi_{\gamma^*\gamma}=0,\pi)} = \frac{\sigma_{\phi_{\gamma^*\gamma}=0} - \sigma_{\phi_{\gamma^*\gamma}=180}}{\sigma_{\phi_{\gamma^*\gamma}=0} + \sigma_{\phi_{\gamma^*\gamma}=180}}$$

Model dependent extraction of the GPs: 2 approach

1) Low energy expension theorem (LEX): expension in q'. only for real non-Born term, i.e. below π threshold

$$d^{5}\sigma = d^{5}\sigma^{BH+Born} + q'_{cm} \cdot \phi \cdot \Psi_{0} + \mathcal{O}(q'^{2}_{cm})$$

$$\Psi_{0} = v_{1} \cdot \left(P_{LL} - \frac{1}{\epsilon}P_{TT}\right) + v_{2} \cdot P_{LT}$$

$$P_{LL} = \frac{4M}{\alpha_{em}} \cdot G^{p}_{E}(Q^{2}) \cdot \alpha_{E}(Q^{2})$$

$$P_{TT} = [P_{TT \ spin}]$$

$$P_{LT} = -\frac{2M}{\alpha_{em}}\sqrt{\frac{q^{2}_{cm}}{Q^{2}}} \cdot G^{p}_{E}(Q^{2}) \cdot \beta_{M}(Q^{2}) + [P_{LT \ spin}]$$

2) Dispersion Relations (DR)

(B. Pasquini et al approach) valid above π threshold

VCS: 12 invariant amplitudes, include non-Born terms amplitudes and GPs parametrized by fit of cross sections vs q²

For this experiment: DR method only, above threshold. LEX not valid

Models projections

All theoretical calculations predict a smooth fall off for α_E

None of the models can account for the non trivial structure of α_E suggested by the data

\rightarrow it is why there is need of new measurements

Lattice QCD	Currently:	Q ² =0 calculations exist but at unphysical quark masses		
	Near Future:	calculations at the physical point for Q ² =0 first calculations for Q ² ≠0		

7

Spatial dependence of induced polarizations in an external EM field

Nucleon form factor data → light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs → spatial deformation of charge & magnetization densities under an applied e.m. field

Induced polarization in a proton when submitted to an e.m. field impact parameter representation = FT of GP GP I GP II Phys. Rev. Lett. 104, 112001 (2010)

M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen

Recent measurements in the world

measurements for α_{F} :

- ⇒ MAMI, A1/1-09, Fonvielle et al. Below and above π threshold
- \Rightarrow MAMI, A1/3-12, Sparveris et al. Above π threshold
- \Rightarrow JLab, this experiment: 1) check MAMI results, 2) extend to higher Q²
- → black: older results

MAMI: $Q^2 < 0.45 \text{ GeV}^2$; $\epsilon = 0.62$ JLab: $Q^2 > 0.33 \text{ GeV}^2$; $\epsilon = 0.97$, higher energy and intensity

1st point will check MAMI older data

Hall C experiment E12-15-001

Contact person: N. Sparveris Co-spokesperson: A. Camsonne, M. Jones, M. Paolone

Anticipated schedule: June 25, 2019 \rightarrow July 7, 2019 Run phase 1 = 13 days

target: 10 cm unpolarized LH2 beam: electron, $50 \rightarrow 85 \mu A$, E = 4.55 GeV \rightarrow modified compared to proposal, was: 8 days on 15 cm target = similar luminosity

Experiment kinematics *

	Kinematical	$\theta_{\gamma^*\gamma}^\circ$	θ_e°	$P'_e(MeV/c)$	θ_p°	$P'_p(MeV/c)$	S/N	beam time
	Setting					,		(days)
	Kin Ia	155	7.97	3884.4	37.20	893.20	1.1	0.5
Part I	Kin Ib	155	7.97	3884.4	51.26	893.20	2.7	0.5
	Kin IIa	140	7.97	3884.4	33.08	859.90	1	0.45
	Kin IIb	140	7.97	3884.4	55.38	859.90	3.7	0.55
	Kin IIIa	120	7.97	3884.4	27.85	794.68	0.9	0.45
	Kin IIIb	120	7.97	3884.4	60.61	794.68	6.2	0.55
	Kin IVa	165	9.39	3820.5	40.85	1010.40	1.3	0.5
	Kin IVb	165	9.39	3820.5	48.45	1010.40	2.4	0.5
	Kin Va	155	9.39	3820.5	38.34	995.20	1	0.5
	Kin Vb	155	9.39	3820.5	50.96	995.20	3.2	0.5
	Kin VIa	128	9.39	3820.5	31.84	919.43	0.7	0.95
	Kin VIb	128	9.39	3820.5	57.46	919.43	7.8	0.55
Part II	Kin VIIa	165	11.54	3708.6	40.81	1175.25	2.6	1.5
	Kin VIIb	165	11.54	3708.6	47.35	1175.25	5	2
	Kin VIIIa	160	11.54	3708.6	39.73	1167.72	2.2	1.5
	Kin VIIIb	160	11.54	3708.6	48.43	1167.72	6.3	2
	Kin IXa	140	11.54	3708.6	35.52	1117.38	1.2	1.5
	Kin IXb	140	11.54	3708.6	52.64	1117.38	8	2

* see updates next slide

Part I: 8 days approved

Part II: will be re-proposed

SHMS: one change of setting through Part I

same position & momentum through out Part II

Part	I	I	I	II	II
Q²	0.33 (GeV/c)	0.43 (GeV/c) ²	0.52 (GeV/c) ²	0.65 (GeV/c) ²	0.75 (GeV/c) ²

Kinematics and beam time (updated, phase 1)

E (MeV)	Θ _{γγ} (deg)	Q ² (GeV ²)	P _e (MeV)	θ_{e} (deg)	P _p (MeV)	θ_{p} (deg)
4550	155	0.33	4020.55	8.0	930.34	37.69
4550	155	0.33	4020.55	8.0	930.34	51.39
4550	140	0.33	4020.55	8.0	882.13	33.68
4550	140	0.33	4020.55	8.0	882.13	55.41
4550	120	0.33	4020.55	8.0	815.69	28.60
4550	120	0.33	4020.55	8.0	815.69	60.48
4550	165	0.45	3970.49	9.05217	1010.40	41.01
4550	165	0.45	3970.49	9.05217	1010.40	48.61
4550	155	0.45	3970.49	9.05217	995.20	38.50
4550	155	0.45	3970.49	9.05217	995.20	51.11
4550	128	0.45	3970.49	9.05217	919.43	31.99
4550	128	0.45	3970.49	9.05217	919.43	57.62

projections for the run in July 2019

Choice of kinematics, angles and analysis

FIG. 7: Left panel: Projected cross sections at $Q^2 = 0.43 \ (GeV/c)^2$. The solid and dashed curves correspond to cross sections at $\phi_{\gamma^*\gamma} = 0^\circ$ and 180°. The two arrows are pointing to the two BH peaks. Right panel: The reconstructed missing mass spectrum.

- Away from the BH peaks \rightarrow near singularities at $\phi = 0^{\circ}$
- At Θ_{vv} > 120° (avoid too large BH)
- $Q^2 = 0.3 \rightarrow 0.75 \text{ GeV}^2$ most unknown part of spectra for α_E
- Above π threshold: more sensitive to GPs
- coincidence: e (SHMS) + P (HMS)
- analysis via missing mass for γ : peak at M=0
- relatively low angle for e' (>8°)

Projected cross sections and asymmetry

Proposed projected result for $\alpha \beta_M$

proposed projection (not updated)

Phase 1:

- 1st point: approved, this summer (100% of data)
- 2nd and 3rd points: 30% this summer (stat+syst. = same)

Phase 2:

• 4th and 5th points, and more statistics on other points

Projections of expected result for α_{F}

- 1st point: approved, this summer (100% of data)
- 2nd and 3rd points: 30% this summer (stat+syst. = same)
- 4^{th} and 5^{th} points: phase 2

Manpower at Temple University for VCS

Currently involved, for hall C experiments:

2 tenured professors + 1 assistant professor: Z.E. Meziani, M. Paolone, N. Sparveris 2 postdocs: H. Atac, M. Boër 5 grad students: N. Deokar, B. Duran, S. Jia, R. Li, M. Rehfuss

Upcoming experiments in 2019 for the group:

1) J/ Ψ + pentaquark: expected to start next week

2) VCS (this talk): summer 2019

will benefit from the analysis

3) A_{1N} : expected in the fall

+ many people interested in the VCS proposal from other institutions

SUMMARY

- Measurement of Generalized Polarizabilities of the nucleon with VCS+BH
- \rightarrow intrinsec property of the nucleon
- \rightarrow partonic structure / dynamic of the nucleon
- Precision improvement (x2), will also check of past experiments
- Extension of Q² range of past measurements for $\alpha_{E}(Q^{2}) \rightarrow structure$
- Paramagnetic vs Diamagnetic effects with β_{M}

Recent and current efforts for the E12-15-001 experiment:

- updated simc, more precise spectrometer response
- exploring other models for interpretation