A Search for the LHCb Pentaquark in J/ψ
Photo-production at Hall C
(for the J/ψ-007 Collaboration)

Burcu Duran

Hall C Winter Collaboration Meeting
January 29, 2019
Discovery of the LHCb charmed (charming!) "pentaquark"

P_c

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_c^0 \to J/\psi K^- p$ Decays - LHCb Collaboration (Aaij, Roel et al.)

Cited by: 666 records

.. of which self-citations: 82 records

Co-cited with: 25593 records

666 citations since 2015!
LHCb charmed (charming!) "pentaquark" P_c

2 P_c states needed to describe the results

- **narrow**: $P_c(4450)$, width: ~ 39 MeV
- **broad**: $P_c(4380)$, width: ~ 205 MeV

Spin/parity either:

- $5/2^+$, $3/2^-$ (most likely)
- $5/2^-$, $3/2^+$
- $3/2^-$, $5/2^+$

Burcu Duran

Hall C Winter Collaboration Meeting

January 29, 2019
Charmed "pentaquark" in Photo-production

- Common Interpretations for LHCb observations

- P_{c} states

- Alternative: Kinematic enhancements through Anomalous Triangle Singularity (ATS)

- The photo-production is an ideal tool to distinguish between the explanations

- if P_{c} states are real states, should also be created in photo-production

- kinematic enhancement through ATS not possible

- $P_{c}(4450)$ creates narrow peak around $E_{\gamma} = 10.1$ GeV

Burcu Duran
Hall C Winter Collaboration Meeting
January 29, 2019
Charmed "pentaquark" in Photo-production

- Common Interpretations for LHCb observations
 - LHCb: True resonant "Pentaquark" P_c states
Charmed "pentaquark" in Photo-production

- Common Interpretations for LHCb observations
 - **LHCb**: True resonant "Pentaquark" P_c states
 - **Alternative**: Kinematic enhancements through Anomolous Triangle Singularity (ATS) (Lui X-H, et al., PLB 757 (2016), p231)
Charmed "pentaquark" in Photo-production

- **Common Interpretations for LHCb observations**
 - **LHCb**: True resonant "Pentaquark" P_c states

- The **photo-production** is an ideal tool to **distinguish** between the explanations
Charmed "pentaquark" in Photo-production

- **Common Interpretations for LHCb observations**
 - **LHCb:** True resonant "Pentaquark" P_c states
 - **Alternative:** Kinematic enhancements through Anomalous Triangle Singularity (ATS) (Lui X-H, et al., PLB 757 (2016), p231)

- The **photo-production** is an ideal tool to **distinguish** between the explanations
 - if P_c states are real states, should be created in photo-production
Charmed "pentaquark" in Photo-production

- Common Interpretations for LHCb observations
 - **LHCb**: True resonant "Pentaquark" P_c states
 - **Alternative**: Kinematic enhancements through Anomolous Triangle Singularity (ATS) (Lui X-H, et al., PLB 757 (2016), p231)

The photo-production is an ideal tool to distinguish between the explanations
 - if P_c states are real states, should **also be created in photo-production**
 - kinematic enhancement through ATS **not possible** (Wang Q., et al., PRD 92-3 (2015) 034022)
Charmed "pentaquark" in Photo-production

- **Common Interpretations for LHCb observations**
 - **LHCb:** True resonant "Pentaquark" P_c states
 - **Alternative:** Kinematic enhancements through Anomolous Triangle Singularity (ATS) (Lui X-H, et al., PLB 757 (2016), p231)

- The photo-production is an ideal tool to distinguish between the explanations
 - if P_c states are real states, should also be created in photo-production
 - kinematic enhancement through ATS not possible (Wang Q., et al., PRD 92-3 (2015) 034022)

- $P_c(4450)$ creates narrow peak around $E_\gamma = 10.1$ GeV
J/ψ Photo-production: Current Data Status

- Measured in many experiments at high $W_{\gamma p}$
 - Dominated by t channel 2-gluon exchange
- Almost no data in threshold region
Unpublished GLUEX data from Lubomir Pentchev’s slide
Resonant J/ψ Production through P_c Decay

- Cross section depends on coupling to $(J/\psi p)$ channel
- J/ψ angular distribution depends on P_c spin/parity

Pentaquark Search with E12-16-007 Experiment in Hall C

- **Experimental Setup (PAC)**
 - 11 GeV beam energy
 - 50 µA
 - 9% copper radiator
 - LH2 15 cm target
 - total 10% RL

- **Experimental Setup (NEW)**
 - 10.6 GeV beam energy
 - 70 µA
 - 9% copper radiator
 - LH2 10 cm target
 - total 10% RL
E12-16-007 SETTINGS

- **Signal \((P_c) \) Setting:**
 - minimizes accidentals and maximizes S/B
 - **HMS:** 4.6 GeV, 16.4°
 - **SHMS:** 4.3 GeV, 30°

- **t channel (BG) Setting 1:**
 - low \(E_\gamma \), low \(t \)
 - precise determination of the \(t \) channel background
 - **HMS:** 4.95 GeV, 19.1°
 - **SHMS:** 4.835 GeV, 17°

- **t channel (BG) Setting 2:**
 - high \(E_\gamma \), low \(t \)
 - precise determination of the \(t \) channel background
 - **HMS:** 4.08 GeV, 19.9°
 - **SHMS:** 3.5 GeV, 20.1°

Photon Energy Reconstruction

Initial photon energy can be unambiguously reconstructed from the reconstructed J/ψ momentum and energy

- **Assumptions**
 - proton target at rest
 - photon beam along the z axis
 - proton and J/ψ are the two final state particles

\[
E_\gamma = \frac{M_\psi^2 - 2E_J M_P}{2(E_\psi - M_P - P_\psi \cos \theta_\psi)}
\]
Projected results for "background" setting 1
low E_{γ}, low t
Projected results for "background" setting 2
high E_γ, low t

![Graphs showing distributions of E_γ and t for different settings.](image)

Labels:
- Counts
- E_γ (GeV)
- t (GeV2)

Legend:
- 1-channel J/Ψ
- $P_3/2$ (5.0% coupling)
- $P_5/2$ (5.0% coupling)
- sum
- 1.0 day estimate (1129 counts)
- 1.0 day estimate (1103 counts)
Projected results for "signal" setting

![Graph 1: Counts vs. E_γ (GeV)](image1)

- t-channel J/Ψ
- P_c 3/2- (5.0% coupling)
- P_c 5/2+ (5.0% coupling)
- sum
- 8.0 day estimate (866 counts)

![Graph 2: Counts vs. t (GeV2)](image2)

- t-channel J/Ψ
- P_c 3/2- (5.0% coupling)
- P_c 5/2+ (5.0% coupling)
- sum
- 8.0 day estimate (865 counts)
Impact on J/ψ World Data

![Graph showing the impact on J/ψ world data with various settings and measurements.](image-url)
Sensitivity for Discovery

- Δ-log-likelihood formalism

- 5σ discovery sensitivity can be reached starting from 1.3%
Hall C Bremsstrahlung Radiator (Jan. 2019)

- Link to water-cooled radiator operating procedure TGT-PROC-19-001:
 - Copy of

- Just upstream of target scattering chamber
- Water-cooled
- Upper (=home) & Lower limit switches
- Stepper motor controlled
- No motion FSD for radiator
 - Can move in/out of beam while beam is on after calling MCC
- But there is an FSD on water flow

Jan 18, 2019

Bremsstrahlung Radiator

Greg Smith’s slide
E12-16-007 Experiment: Radiator for photon beam

Setup & GUI

Spare
Primary
HOME=OUT

Greg Smith’s slide
Particle Identification

- **HMS Momentum Settings**
 - 4.6 GeV, 4.95 GeV, 4.08 GeV

- **SHMS Momentum Settings**
 - 4.835 GeV, 4.3 GeV, 3.5 GeV

- **PID for HMS:**
 - HMS Cherenkov + Calorimeter

- **PID for SHMS**
 - SHMS Noble Gas Cherenkov + Calorimeter
Summary

High impact experiment

- true nature of the LHCb "pentaquark" P_c
- Strong sensitivity to the coupling 1.3%
- Contribution to the knowledge of the threshold region of the J/ψ photo-production (absolute cross section)
A Search for the LHCb Charmed Pentaquark in Photo-Production

The LHCb experiment found very strong evidence for a charmed pentaquark.

The first collaboration meeting for the J/ψ-007 experiment took place on October 26, 2018 at Jefferson Lab.

Interested to know more about the collaboration? Want to contact the spokesperson? Interested to join the
A Search for the LHCb Charmed Pentaquark in Photo-Production

PLEASE SIGN UP FORhifts!
Background: Inelastic t Channel $\gamma p \rightarrow J/\psi p\pi$

- Threshold at 9 GeV
- Reconstructed photon energy E_{rc} is 1 GeV too low
- Contribution to the $8 \text{ GeV} < E_{rc} < 9.7 \text{ GeV}$ range for a photon end-point energy of 10.7 GeV
 - not an issue for the Pc(4450) ($E_{rc} > 9.7\text{GeV}$)!

Burcu Duran
Hall C Winter Collaboration Meeting
January 29, 2019
Background: single electron/pion tracks

- Electron rate estimated using CTEQ5, cross checked with F1F209
- Positron rate estimated using EPC combined with a background program from E94-010
- Contribution to the coincidence rate < 10^{-5} Hz
- Pion rates estimated using Wiser
 - Assuming a pion rejection > 103 from the Cherenkov + Calorimeter coincidence rate \sim 10^{-5} Hz
Resolution

reconstructed J/ψ mass: $\sigma = 5$ MeV

from Sylvester Joosten's slide