Hall A Software Overview and Progress

Ole Hansen

Jefferson Lab

JLab 12 GeV Computing Review November 27–28, 2018

Ole Hansen (Jefferson Lab)

Hall A Software Overview and Progress

Hall A Core Experimental Equipment

Future Hall A Projects

SuperBigBite (SBS)

Møller (standard model test)

SoLID (SIDIS, PVDIS, J/ ψ , ...)

Ole Hansen (Jefferson Lab)

Hall A Software Overview and Progress

SuperBigbite Spectrometer (SBS)

B. Wojtsekhowski, G. Cates, et al.

- Set of components for flexible mediumacceptance spectrometer configurations
 - Magnet
 - ► GEM trackers (≈ 100k channels) in high-rate environment (700 kHz/cm²)
 - Hadron and electron calorimeters
 - Segmented scintillator coordinate det.
 - Timing hodoscope & veto plane
 - Gas Cherenkov
 - Dual-radiator RICH
- To be used in conjunction with existing BigBite magnet for building electron arm
- Proposals approved for
 - ► High-luminosity (10³⁸) EM form factor measurements up to Q² ≈ 10 GeV²
 - SIDIS/Transversity
 - At least four different experimental configurations
- Additional proposals submitted
- Under construction
- Earliest run likely Spring 2021

Projected Hall A Schedule & Experiment Requirements

as of 10/2018 (somewhat tentative, as always)

Run Period	203	19	2020*	202	21	2022*	2023*
	Spring	Fall	Spring	Spring	Fall	Fall	Fall
Main Experiment(s)	APEX	PREX CREX	CREX	GMn	GEn	SBS GEp	SIDIS
Detector Systems	HRS	HRS	HRS	BB SBS as <i>n</i> det		ECAL SBS as <i>p</i> det	BB SBS+RICH
Trigger Rate (kHz)†	10	0.24	0.03	2.5	2.5	2.5	5
Event Size (kB)†	5	8	8	50	60	170	64
Data Rate (MB/s)	50	2	0.25	125	150	425	320
Total Tape Volume (PB)‡	0.49	0.12	0.01	0.63	1.2	3.3	2.5
Total CPU (M-core-hrs)‡	0.04	0.003	<0.001	1.0	1.5	3.8	3.3
Software Framework	C++ Analyzer ("Podd") ✔						
Extensions	High-	Parity		GEM Tracking €), Calorimeter analysis €),			
	rate	analyzer		multi-threading €), new decoders €),			
	VDC ✔	(JA€)PAN ✔		Calibrations X, ToF X, PID X			

* Installation period during part of year; †Averages; ‡Includes simulations and three full production passes

Legend: APEX: Dark photon search; PREX: Neutron skin of ²⁰⁸Pb; CREX: Weak charge of ⁴⁸Ca; HRS: High-resolution spectrometer; BB: BigBite; SBS: SuperBigBite; VDC: Vertical drift chamber; GEM: Gas Electron Multiplier tracker; PAN: Parity Analyzer; Core: Xeon W-2145 3.7 GHz (Skylake); ✓ ready; € in progress; X to do

Hall A C++ Analyzer ("Podd") Framework

- Design goals:
 - Highly modular to accommodate frequently changing experimental setups
 - Run-time configurable
- C++ class library built on top of ROOT. Steering via ROOT interpreter
- Developed in-house. Standard choice for Hall A analysis since 2003
- Shared development with Hall C since 2012
- Strengths
 - Light-weight: minimal dependencies, small memory footprint
 - Apparently quite user-friendly: students learn easily
 - Output & cuts configurable (at run-time) via text files. Flat text file database
 - Works with ROOT 5 & 6, on current and older Linux and macOS
 - Adequate for Hall A & C-style spectrometer analyses
- Limitations
 - Single-threaded & not distributed
 - Designed for one-pass analysis only:

EVIO raw data \rightarrow ROOT ntuple-style trees + histograms

Plug-In Architecture

Extensive Repository of Application Libraries

Hardware decoders

- Various common Fastbus and VME modules
- JLab 12 GeV pipelined electronics (FADC250, F1TDC)
- INFN "MPD" GEM tracker readout

• Hall A Reconstruction

- V HRS w/standard trackers & detectors
- Key HRS focal-plane polarimeter (FPP)
- BigBite drift chamber track reconstruction (TreeSearch)
- DVCS calorimeter waveform analysis
- Tritium experiments custom detector classes
- Calibration scripts & tools

Hall C Reconstruction

- V HMS & SHMS w/standard trackers & detectors
- V Calibration scripts & tools

SBS

- Digitization algorithms
- Prototype GEM track reconstruction

Physics/Analysis

- Standard kinematics calculations, e.g. (e, e'), (e, e'p)
- Frequently-used correction algorithms, e.g. energy loss, beam position, extended target

 \checkmark = included in standard Hall A distribution (\checkmark =Hall C)

Experience with Hall A Analyzer

- Used by (nearly) all experiments since 2003 without significant issues
- Close ROOT integration seen as advantage (by both users and developers)
- Readily accepted by students
- Modularity very helpful
- Early 12 GeV experiments (2014–2018): again, no significant issues (unsurprising since no new spectrometers)
- Fast time to publication is possible if calibration demands are low:

User Education & Resources

- (Bi-)Annual Analysis Workshop
 - Hands-on tutorials & worked-out analysis examples
 - New this year:
 - ★ Analysis with Python
 - $\star\,$ Hands-on introduction to computing on the JLab farm
 - Materials archived on web
 - AV recordings of presentations
 - Well attended (50-some participants). May expand next year
- New: Redmine project management, issue tracker, documentation wiki https://redmine.jlab.org/projects/podd
- Software development kit (SDK)
- GitHub code repository: https://github.com/JeffersonLab/analyzer
 - Automated Travis CI builds
 - ho ~ Monthly Coverity Scan defect analysis

Recent Progress

• Support for new DAQ modules and modes (mainly for SBS et seq.)

- JLab 12 GeV pipelined frontends (FADC250, F1TDC)
- INFN "MPD" readout for GEM trackers
- Multiblock readout mode (multiple events per buffer) for pipelined modules
- CODA 3 data format
- Official Analyzer Release 1.6 (14-Mar-2018)
 - > Stable environment, used by current ${}^{3}H/{}^{3}He$ experiments
- Universal database API (beta)
 - Important as Hall A and Hall C use different database backends
- Under-the-hood improvements
 - CMake build system (alternative to aging SCons)
 - Extensive code cleanup, guided by static code analysis

New Development Required for 2021 and Beyond

- SBS
 - GEM track reconstruction for BigBite and SBS configurations (partly done)
 - New detector reconstruction algorithms
 - Hadron and electron calorimeters (cluster finding)
 - * RICH (for SBS-SIDIS, re-use existing HERMES algorithm)
 - Calibration & analysis
 - ★ Elastic e-p kinematic correlation analysis for SBS-GEp
 - ***** SBS-GEp \vec{p} polarimetry
 - ★ Time-of-flight and PID
 - ★ GEM tracker alignment, calibrations
 - ★ Event display and online monitoring

See S. Riordan's talk (next) for details

• Large data volume handling

- Efficient workflow tools, already developed by SciComp group (SWIF), can learn from Hall B & D's experience
- Multi-threading (may benefit SBS better I/O and memory usage)

Summary

- Hall A analysis framework and HRS reconstruction software has been in production use for 15 years. Stable and well debugged
- Sufficient for 12 GeV experiments through 2020
- Shared development with Hall C ongoing, proven very helpful
- Experiments from 2021 onwards, in particular the SBS project, require development of new reconstruction routines, which is underway