SBS Software and Computing

JLab Software Review

Seamus Riordan

seamus@anl.gov

November 27, 2018

Project Overview

- Super Bigbite is a broad program utilizing large acceptance and high luminosity
- Core measurements are elastic nucleon form factors at high Q²
- Total of 184 days of running approved
- Present projected start 2021

Detector Overview

• Several major new subsystems

Event Rate	Up to ~5 kHz
GEM Trackers	100k strips (≤40% occupancy)
Hadronic calorimeter	288 FADC
Electromagnetic Calorimeter	1700 ADC
Scintillator coordinate detector	2000 TDC
Gas Cherenkov	550 TDC/ADC
Scintillator Timing Plane	360 TDC/ADC

- Reuse of existing
 - Bigbite EM calorimetery (~200 PMTs)
 - HERMES RICH (2000 PMTs)

Program and Kinematics

Projected Year	Experiment	Production Days	Luminosity [Hz/cm²]	Peak GEM Rate [kHz/cm ²]
2021	GMn	25	3×10 ³⁸	100
	GEn-Recoil	5	1×10 ³⁸	100
2022	GEn	50	6×10 ³⁶	100
2023	GEp	45	8×10 ³⁸	700
2024	SIDIS	64	4×10 ³⁶	50

- Form factor experiments benefit from relatively clean coincident kinematics, high trigger threshold
- GMn, GEp (cryo targets) have largest anticipated rates
- Q² = 12 GeV² GEp kinematic has highest rate and serves as ultimate benchmark for performance

Present Projected Timeline and Milestones

	Software activities	Experiment running and analysis
	Completed – Full simulation interfaced to analysis Completed – Decoders and channel analysis	
Fall 2018	Began analysis of digitized simulated experiments	
Jan 2019	Collection of online and offline analysis and displays	
2019	Neutron FF experiment simulated analysis Goal – GMn tracking to 80% efficiency, 8 Hz	
2020	Jan - GMn, GEn ready for analysis Proton FF experiment simulated analysis Online, offline scripts finalized from commissioning	March - GMn installation begins
2021	Goal – GEp tracking to 80% efficiency, 3 Hz Jun - GEp ready for analysis Start simulated analysis of SIDIS, TDIS	Jan - GMn start of run GMn analysis begins Fall – GEn start of run
2022	Jan - SIDIS ready for analysis	Fall - GEp start of run?
2023		GEp analysis begins? SIDIS start of run?

Analysis Readiness Checklist

Simulation of backgrounds and analysis expected to take place on JLab farm

Full analysis includes

- Version controlled repository of software for each experiment
- Organized passes for
 - Pool of simulated individual background events
 - Pool of simulated digitized events with background superimposed
- Use of tracks from reconstruction under full background and +50%, +100% conditions
- Calorimeter cluster reconstruction under superimposed background
- Cherenkov cluster reconstruction
- Integration of inter-detector information for
 - Identifying good track pathways
 - Probabalistic track identification
- Full event-by-event kinematic and vertex reconstruction including optics models
- Identification of
 - Random backgrounds
 - Contamination of inelastic and radiative events

Collaboration Workforce

- Consistent and active workforce
- Weekly regular meetings

Subproject	
Subgroup and Organization	ANL
Front end decoding	JLab, INFN, ANL, CMU, UVA
GEM Analysis and Tracking	JLab, UConn, UVA
HCal	CMU
ECal	UConn
Coordinate Detector	CNU
Timing Hodoscope	Glasgow
GRINCH Cerenkov	W&M
Bigbite Legacy	ANL

• Spokespeople are responsible for experimental analysis

Institution	Collaborators (FTE/yr)
ANL	Riordan (0.2)
CMU	Quinn, Cornejo (0.5)
CNU	Monaghan, Brash, students
Glasgow	Annand, Hamilton, Montgomery
INFN	Cisbani, Musico
JLab	Camsonne (0.2), Hansen (0.1), Future Postdoc?
UConn	Puckett (0.2), Fuchey (0.5), Student (0.5)
UVA	Liyanage, Gnanvo, Future postdoc?, Di, Jian
W&M	Averett, Ayerbe-Gayoso
Professor/Staff Po	stdoc Student

Goals and Status

- Complete simulation of all experiments
 - Robust simulation developed (more in following)
 - Completed integration to analysis framework in 2018
- Decoding, basic analysis of CODA data in Hall A analyzer
 - Decoders available for all subsystems (including MPD, FADC)
 - Output and low-level analysis of channel-level data completed
- Analysis of experiments
 - Clustering, tracking (more in following), inter-detector association underway
 - Optics models, spin transport, etc to be finalized
 - Simulated analysis of experimental observables to follow
- Online and Event Displays
 - Repository started for subsystems, individual groups are responsible
 - Software exists for legacy Bigbite systems (including optics)
 - Will continue to develop through assembly/commissioning period up to runs

Simulation and Analysis Integration

- Spent significant effort to integrate simulation and analysis
- Full set of elastic, choice of inelastic and random background generators
- Have full chain to take Geant4 hits and produce digitized channels
 - Methodology similar to developed GEM digitization libraries
- Hall A analyzer has decoder to interface to simulation ROOT output
- Production of single virtual event rate of 0.1 Hz with fully correlated GEp background and digitization
- Now starting test of full analysis chain

GEM Tracking Software

- Primary deployed algorithm using recursive TreeSearch (Raw combinatorics also employed for some analyses)
- GEMs provide six time samples over 25ns bins with jitter
- Hits are differentiated by fitting to spatial and temporal components
- Require amplitude matching between x-y components to obtain full 3D
- General restrictions are placed on search areas based on other detector knowledge]
- Basic multithreading implemented

GEM Tracking – GMn

- Since 2016
 - Improved GEM response and validation based on data from constructed GEMs
 - Observe larger and wider background response
- Event reconstruction at
 - 70% tracking efficiency (2020 goal 80%)
 - 3 Hz (2020 goal 8Hz)
- Continuing to evaluate better separation of broad ADC clusters

GEM Tracking – GEp (goal by mid 2021)

- GEp rates roughly factor 5 higher than GMn
 - Goal: 80% efficiency, 3 Hz by mid 2021
- Significant postprocessing will be required Reevaluating TreeSearch
- GMn will be critical to understanding high rate data
- Have postdoc focusing on this effort

Tape Storage Requirements

Projected Year	Experiment	Production Days	Data Rate [MB/s]	Raw Data Volume [TB]	Processed Volume [TB]	Simulation Volume [TB]
2021	GMn	25	125	300	200	30
	GEn-Recoil	5	125	50	40	5
2022	GEn	50	150	600	500	60
2023	GEp	45	425	1700	1300	300
2024	SIDIS	64	320	1300	900	300

- GEM hits represent bulk of data
- Data rates scale approximately linearly with background

Computing Requirements

Projected Period	Experiment	Analysis Rate [ms/evt]	Simulation kCore-hours	Analysis kCore-hours
2021-2023	GMn	135	150	700
	GEn-Recoil	135	40	100
2022-2024	GEn	135	300	1200
2023-2025	GEp	330	1100	2700
2024-2026	SIDIS	66	2200	1100

- Assumes three passes over production data
- Simulation rate for total digitized with background 0.1 Hz for GEp full background
- Simulated analysis at similar rate as production

Summary

- SBS collaboration has significant resources dedicated to software
- SBS runs projected to start in two years (January 2021)
- Simulation well developed and recently interfaced to analysis
- Decoding and analysis infrastructure in place within Hall A analyzer
- Tracking remains primary challenge for software
 - Goals to have analysis ready approximately 1 year before each experiment