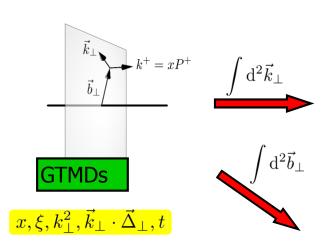
CLAS12 Run Group B Electroproduction on deuterium with CLAS12

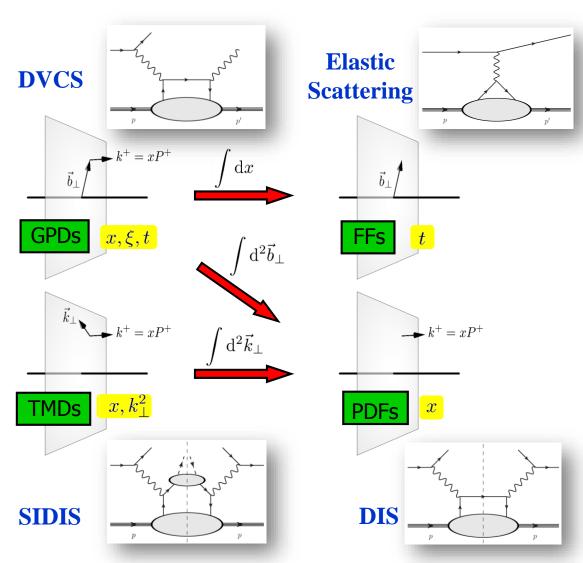
- Physics goals
- Presentation of the RG-B experiments
 - Experimental setup
 - Running conditions
 - Run plan and task sharing



Silvia Niccolai, IPN Orsay, on behalf of RG-B

CLAS Collaboration meeting, JLab, 11/14/2018

Transverse momentum $\vec{k}_{\perp} = xP^{+}$ Impact parameter



Run-Group B aims to measure all these distributions, using **deuteron** as a **neutron target** → **Quark-flavor separation**, **combining with proton results**

- + EMC effect, SRC
- $+ J/\psi$ photoproduction on deuteron

Multi-dimensional mapping of the nucleon

A complete picture of nucleon structure requires the measurement of all these distributions.

CLAS12 Run-Group B

- Common features to all experiments of RG-B:
 - ✓ Liquid deuterium target
 - ✓ Beam energy: 11 GeV
 - ✓ Luminosity = 10^{35} cm²/s
- Maximum approved PAC days: 90
- 4 PAC-approved experiments, 1 High-Impact experiment, 3 Run-Group experiments
- First experiment approved in 2007, last one in 2018

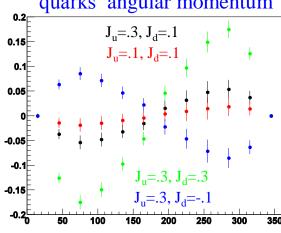
E12-07-104	Neutron magnetic form factor	G. Gilfoyle	4-	30
E12-09-007(a)	Study of parton distributions in K SIDIS	K. Hafidi→W. Armstrong	4-	56
E12-09-008	Boer-Mulders asymmetry in K SIDIS	M. Contalbrigo	A -	56
E12-11-003	Deeply virtual Compton scattering on the neutron	S. Niccolai	(HI)	90
E12-09-008b	Collinear nucleon structure at twist-3 in dihadron SI	DIS S. Pisano→M. Mirazita		
E12-11-003a	In medium structure functions, SRC, and the EMC e	effect O. Hen		
E12-11-003b	Study of J/ψ photoproduction off the deuteron	Y. Ilieva		

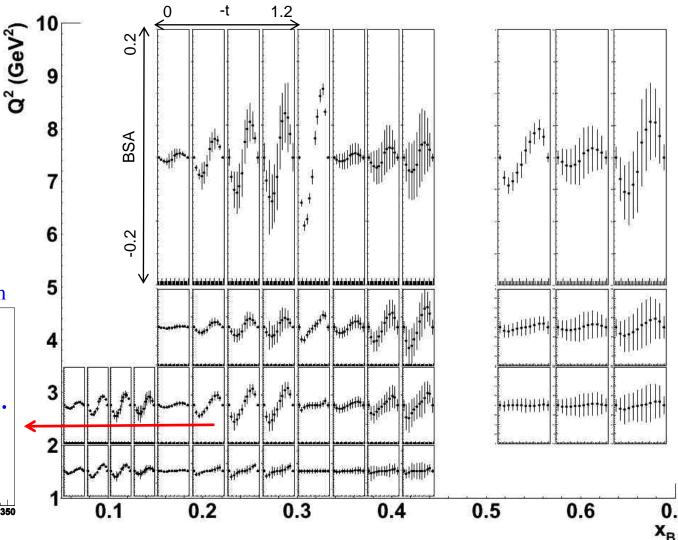
2019 schedule: first part of RG B in January 30th - March 10th 2019, second part in November 1st - December 19th

→ 44.5 PAC days (1/2 of approved run time for nDVCS)

E12-11-003: DVCS on the neutron

 $ed \rightarrow e(p)n\gamma$ Fully exclusive final state: CLAS12+FT+CND

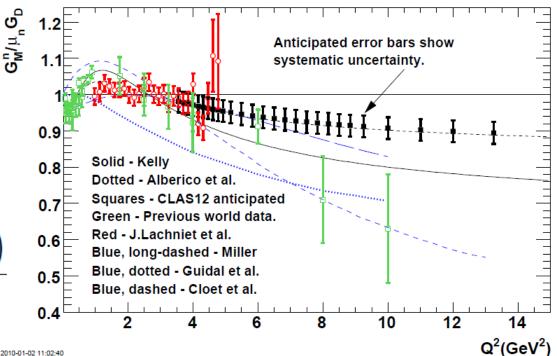

Spokespersons: A. El Alaoui, V. Kubarovsky, S. Niccolai, S. Pisano, D. Sokhan


Goal: nDVCS beam-spin asymmetry, the most sensitive observable to the GPD E

- Liquid deuterium target
- $L = 10^{35}$ /nucleon
- Full field, inbending
- 90 days

JLab PAC: high-impact experiment

Model predictions (VGG) for different values of quarks' angular momentum


E12-07-104: Measurement of the neutron magnetic form factor at high Q² using the ratio method on deuterium

Spokespersons: W. Brooks, G. Gilfoyle, K. Hafidi

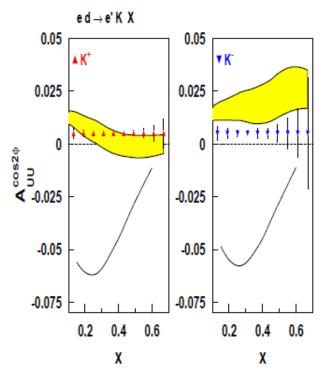
Goal: extract G_M^n for $3 < Q^2 < 14$ GeV² via the ratio of **quasi-elastic e-n** and **quasi-elastic e-p** on deuteron

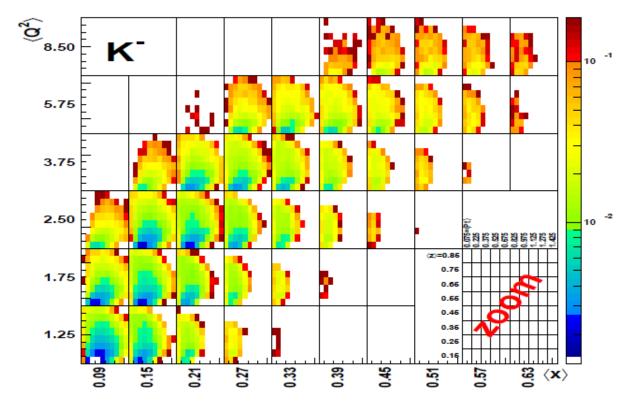
$$R = \frac{\frac{d\sigma}{d\Omega}(^{2}\mathrm{H}(e,e'n)_{QE})}{\frac{d\sigma}{d\Omega}(^{2}\mathrm{H}(e,e'p)_{QE})} =$$

$$= a(Q^{2})\frac{\sigma_{mott}^{n}(G_{E}^{n}{}^{2} + \frac{\tau_{n}}{\varepsilon_{n}}G_{M}^{n}{}^{2})\left(\frac{1}{1+\tau_{n}}\right)}{\frac{d\sigma}{d\Omega}(^{1}\mathrm{H}(e,e')p)}$$

- Both particles of the two quasi-elastic final states will be detected in CLAS12
- Neutrons will be detected in the FEC, PCAL and FTOF
- Neutron efficiency must be frequently monitored to minimize systematics
- Full torus field, inbending
- Approved for 30 days of running

E12-09-008: Boers-Mulders asymmetry in K SIDIS


Spokespersons: H. Avakian, M. Contalbrigo, K. Joo, Z. Meziani

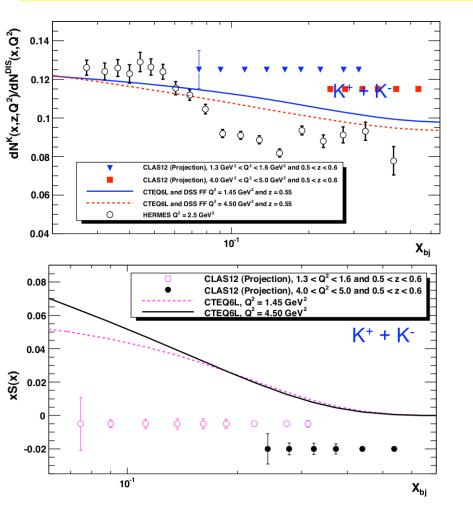

Goal: measurement of spin azimuthal asymmetries in K-SIDIS

- → transverse momentum dependence of valence quark transverse spin distributions
- → spin-orbit correlations

Azimuthal Modulations of F_{UU}

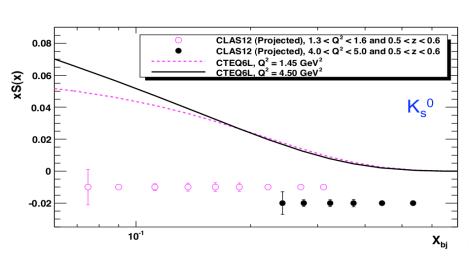
$$\frac{\textit{d}^{\textit{f}}\textit{S}^{\textit{ep}\rightarrow\textit{e'}\textit{hX}}}{\textit{dx}\;\textit{dy}\;\textit{dz}\;\textit{d}\textit{f}\;\textit{dP}_{\textit{h}^{\wedge}}^{2}} \propto \{\textit{F}_{\textit{UU},\textit{T}} + \textit{e}\textit{F}_{\textit{UU},\textit{L}} + \sqrt{2\textit{e}(1+\textit{e})}\cos(\textit{f})\textit{F}_{\textit{UU}}^{\cos(\textit{f})} + \textit{e}\sec(2\textit{f})\textit{F}_{\textit{UU}}^{\cos(2\textit{f})}\}$$

- **RICH** is required for kaon ID
- 56 approved days, 50% (27 days) outbending (opposite field polarity for systematic checks)
- Proton- and deuteron-target data will be combined for flavor separation


E12-09-007a: Study of partonic distributions in SIDIS K production

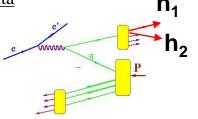
Spokespersons: H. Avakian, F. Benmoktar, A. El Alaoui, K. Hafidi, M. Mirazita

Contact person: W. Armstrong

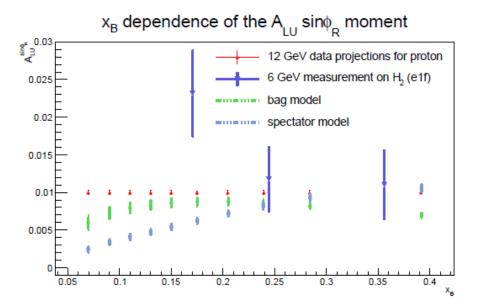

Goal: measure **multiplicities** for various hadrons $(\pi^+, \pi^-, \pi^0, K^+, K^-, K^0_s)$ on deuterium, for 0.05 < x < 0.7

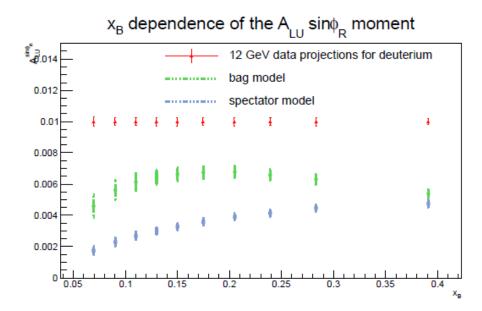
- \rightarrow Measure **fragmentation functions** and their Q² dependence
- → Extract strange quark parton distribution functions

- 56 PAC days (including 2 days of diagnostics)
- H- and D-target data will be combined
- **RICH** necessary for kaon ID
- 50 % of beam time with reverse magnetic field


Need **both torus field settings** to eliminate systematic associated with different-charge acceptances.

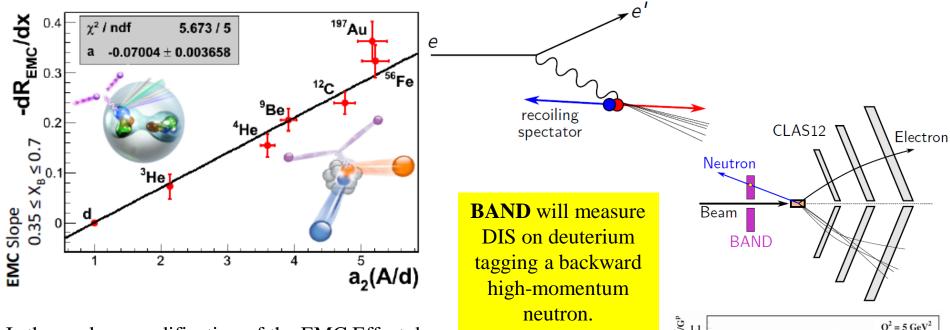
E12-09-008b: Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium


Spokespersons: S. Pisano, A. Courtoy


Contact person: M. Mirazita

Goals:

- Measure multiplicities and beam spin asymmetry
- Extract the unpolarized di-hadron Fragmentation Function and the collinear PDF e(x)



Also: 3D extraction of the BSA in (x_B, z, m_{pp}) bins on proton (RG-A) and deuteron (RG-B)

Measuring on both proton and deuteron will allow flavor decomposition

E12-11-003a: In medium proton structure functions, SRC and the EMC effect measured with CLAS12 and the Back Angle Neutron Detector

Spokespeople: O. Hen, L. Weinstein, H. Hakobyan and E. Piasetzky

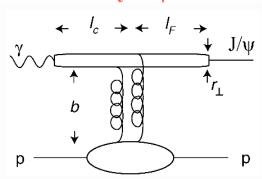


Is the nucleon modification of the EMC Effect due to Mean-Field nucleons or to correlated pairs?

- ➤ Measure the **bound proton structure function** as a function of neutron momentum or virtuality in deuterium
- > SRC hypothesis predicts modification increasing with virtuality
- ➤ A way to select DIS on high-momentum nucleons is needed

Expected results for:

- 75 beam days
- Single-cell LD₂
- Full field inbending



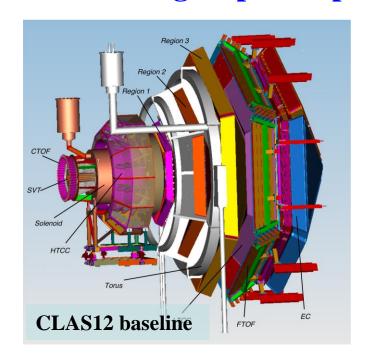
Study of J/\psi photoproduction off deuteron

Spokespeople:

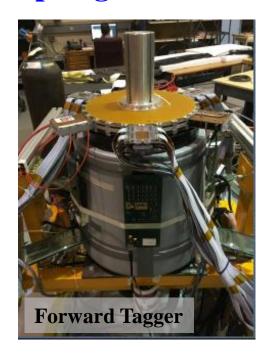
Y. Ilieva, B. McKinnon, P. Nadel-Turonski, V. Kubarovsky, S. Stepanyan, Zh.W. Zhao

Why J/ψ?

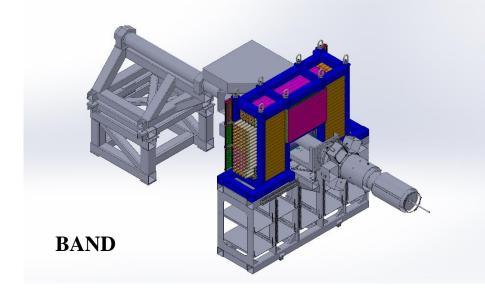
- Small transverse size: r_⊥~1/m_c=0.13 fm
- Large t at threshold, $|t_{min}|=1.7 \text{ (GeV/c)}^2$
- $b \sim 1/|t|^{1/2} = 0.2 \text{ fm}$
- The $c\overline{c}$ couples to gluon field in the target
- •→ Process dominated by multi-gluon exchange
- Probes the **short-range structure** of the target


Goals: determine the <u>cross sections</u> of:

- Quasi-free photoproduction off **neutron**: $\gamma(n) \rightarrow J/\psi n$
 - Search for isospin partners of LHCb pentaquarks
 - Test bound-nucleon gluonic form factors
- Final-State Interactions (J/ψN rescattering)
 - Estimate σ_{J/ψN}
- Coherent photoproduction: γd→J/ψd
 - Study gluonic form-factor of deuteron


Experimental configuration

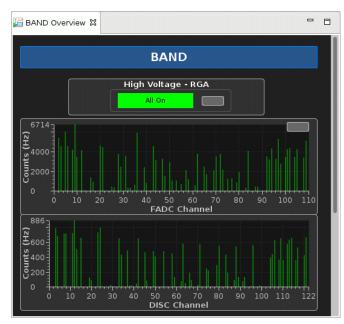
- Unpolarized LD2 target and 11-GeV electron beam, L=10³⁵ s⁻¹cm⁻².
- Standard CLAS electron trigger and a Muon trigger (established during RGA).
- Charged-hadron detection in the Forward and Central Detectors.
- Neutron detection in the Forward Detector (will look for CND capabilities as well).
- Full torus field, electrons in-bending.


Run group B: experimental setup for the spring run

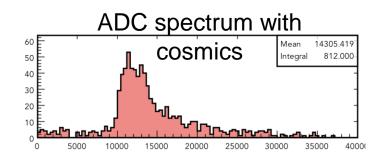
BAND: description and installation

Back Angle Neutron Detector

- 160 170°
- ~ 40% neutron efficiency
- Plastic scintillator
- 116 7.2 x 7.2 cm² bars read out on both ends
- Veto Layer
 - 24 2 x 7.2 cm² bars
 - one 2" PMT per bar
- Installed in the hall on top of SVT cart in August



BAND status update


- BAND fall RG-A run:
 - Only ~44% of PMTs equipped with FADCs and TDCs
 - Dedicated trigger board for cosmics
 - First gain matching calibrations
 - Development of DAQ settings
- In progress
 - Calibration software
 - Implementation in CLAS software
- BAND monitoring done (thanks Cole)
- HV control and scalers done (thanks Nathan)

- Install remaining readout hardware and cables
- Install laser calibration system
- → This work will happen during the January downtime

Rates with beam at 45nA

Run group B: running conditions and run plan

All RG experiments agreed on the same set of running conditions (ERR, February 2018)

- Common goal: maximize statistics on deuterium
 - ➤ Single cell target: liquid deuterium preferred over dual target
- RG-A data will be used to subtract proton contribution and/or evaluate neutron efficiencies:
 - > Same target cell as RG-A (5 cm long, single cell)
- Magnetic field settings: same as RG-A, for consistency
 - > 75% full torus field inbending, 25% full torus field outbending solenoid full field
- Ancillary runs: **periodic liquid hydrogen target** runs (~8%), plus empty target and Moeller runs
- Luminosity: as close as possible to 10^{35} cm²/s
- Beam energy: as close as possible to **11 GeV**

Time it takes to change target material: one shift?

Bob Miller will do tests in late December and January

RSAD, COO, ESAD, and Operation Manuals are done RG-B Web page and wiki page have been created Shifts are assigned

Run group B: draft of trigger configuration

Same as RG-A, without the FT trigger

• Inclusive electron scattering trigger

Scattered electron detected in the **Forward Detectors**: High Threshold Cherenkov Counter (HTCC), Drift Chambers (DC), Preshower Calorimeter (PCAL) and Electromagnetic Calorimeter (EC).

• "Muon" trigger

Select events with two muons detected in the Forward Detectors only. This trigger does not require to detect the scattered electron at all.

• Technical triggers (prescaled)

- o Electron trigger without DC segments
- PCALxECAL trigger with low threshold
- o Forward tagger trigger with low threshold
- Random triggers (generator + Faraday cap)

Trigger performances for fall RG-A run: production rates at 45nA beam (with FT):

- Inbending: 12kHz event rate (Electron trigger: ~30%; Muon trigger: ~21%), data rate: ~300MB/sec, LT=96%.
- Outbending: 14kHz event rate (Electron trigger: ~50%; Muon trigger: ~20%), data rate: ~330MB/sec, LT=95%

Projected raw-data size for 45 PAC days of RG-B: ~500 TB

Responsibilities and manpower

Run coordinators for the spring run of RG-B: S. Niccolai, Y. Ilieva, J. Gilfoyle, M. Contalbrigo, M. Mirazita, L. Weinstein, (S. Stepanyan, P. Turonski, V. Kubarovsky)

Monitoring coordinator: Y. Ilieva

Chef: Z. Zhao

Monitoring and reconstruction « workers »: K. Price, R. Wang, L. Baashen, M.

Armstrong, A. Movsisyan, O. Soto Analysis coordinator: S. Niccolai

Calibrations: task sharing (according to the CLAS12 Task List)

HTCC: GWU

• LTCC: Temple

DC: UMISS

FTOF: ANL

CTOF: FIU

• RICH: Duquesne

FTCAL: INFNGE

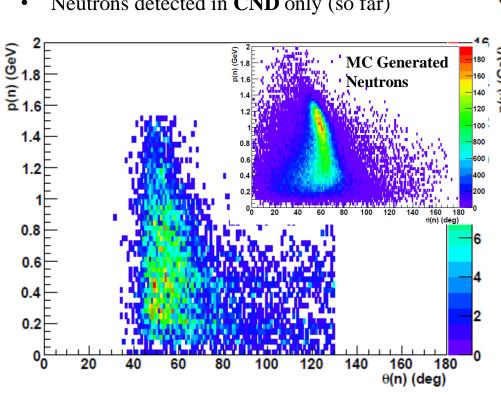
• FTHODO: York

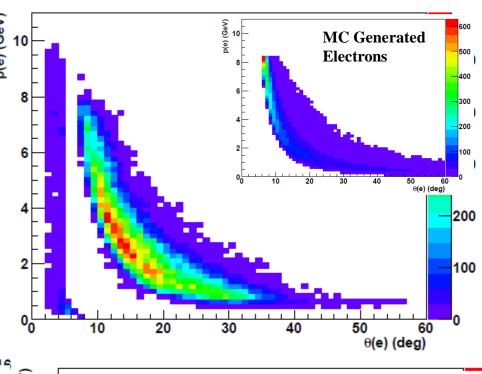
CND: Glasgow

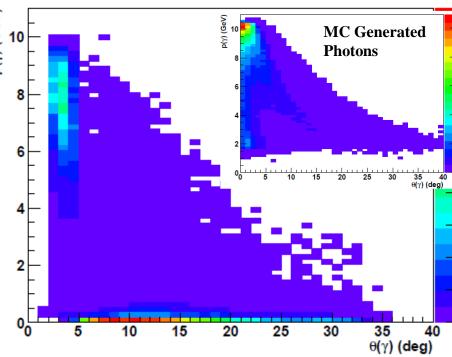
• ECAL, PCAL: To be assigned (Jlab?)

• CVT (alignment): Richmond

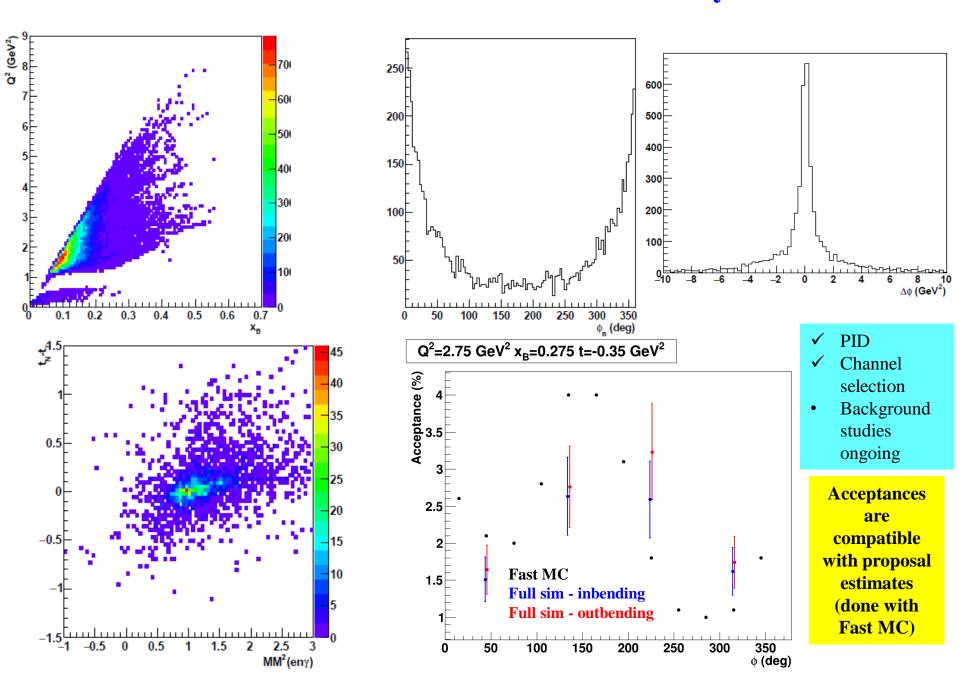
BAND: MIT/ODU


Calibration procedures are being tested for RG-A


➤ Data reconstruction (COATJAVA) is in use for RG-A


Readyness for physics results: the example of nDVCS

Event generator: pDVCS/nDVCS on deuterium


- → GEMC 2a.4.2, RG-A gcard + deuterium target
- \rightarrow COATJAVA 5b.5.0
- → ROOT-based data analysis (code on github)
- \rightarrow PID from EB
- Electrons detected in **FD**
- Photons detected in EC and FT
- Neutrons detected in **CND** only (so far)

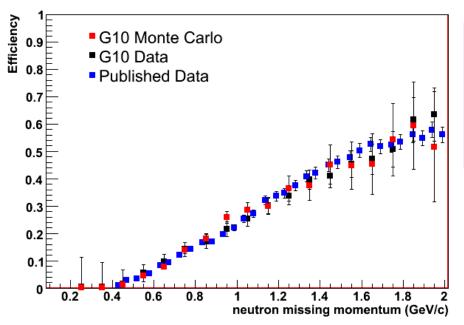
nDVCS: kinematic variables and exclusivity cuts

Summary

- RG-B has 7 experiments, sharing the common goal to advance in the multi-dimensional imagining of the nucleon, disentangling the quark flavor dependence
- Strictly linked to RG-A → same running conditions (beam energy, target cell, magnetic fields)
- Detector configuration: same as RG-A (+LD2) + BAND
- Task sharing for data taking, calibrations, and reconstruction is established
- The experiment groups have manpower to accomplish these tasks and their own analyses
- The tools for the data analysis are available and are being tuned on simulation and RG-A data
- → Looking forward to take data in the spring!

Back-up slides

Run group B: running conditions


All RG experiments agreed on the same set of running conditions (ERR, February 2018)

- Common goal: maximize statistics on deuterium
 - ➤ Single cell target: liquid deuterium preferred over dual target
- RG-A data will be used to subtract proton contribution and/or evaluate neutron efficiencies:
 - > Same target cell as RG-A (5 cm long, single cell)

Time it takes to change target material: one shift at most (Bob Miller)

RG-B will have **periodic hydrogen-target runs** (~8%) to monitor neutron-detection efficiency → ~60% of the hydrogen running than what would be obtained with the dual target for 30 days NDE will also be monitored from kinematically complete reactions on deuterium

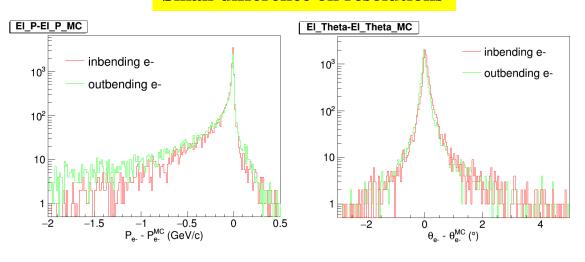
Example of NDE extracted from deuterium data:

- Work by S. A. Pereira on CLAS-g10 data set
- Chosen reaction $\gamma d \rightarrow pn\pi^+\pi^-$
- Exclusivity cuts to select the final state precisely
- Efficiency obtained comparing detected and expected neutrons

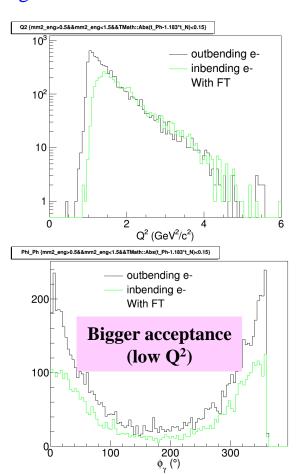
Possible channels to measure NDE in RG-B:

- ed→e'pnπ+π-
- ed →e'pn

Run group B: running conditions


All RG experiments agreed on the same set of running conditions (ERR, February 2018)

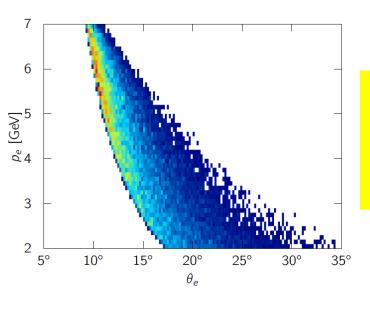
- Common goal: maximize statistics on deuterium
 - ➤ Single cell target: liquid deuterium preferred over dual target
- RG-A data will be used to subtract proton contribution and/or evaluate neutron efficiencies:
 - > Same target cell as RG-A (5 cm long, single cell)
- Magnetic field settings: same as RG-A, for consistency
 - > 75% full torus field inbending, 25% full torus field outbending solenoid full field


For 90 days of running: 67 days inbending, 23 days outbending

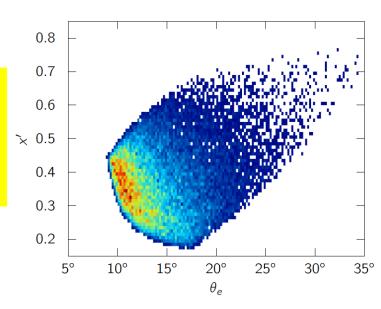
- ✓ SIDIS proposals originally asked for 27 days outbending \rightarrow **OK**
- ✓ GMn proposal asked for 30 days inbending \rightarrow **OK**
- ✓ nDVCS originally asked for 90 days inbending \rightarrow **OK**

Small difference on resolutions

Full simulations+reconstruction for nDVCS


Run group B: running conditions

All RG experiments agreed on the same set of running conditions (ERR, February 2018)


- Common goal: maximize statistics on deuterium
 - ➤ Single cell target: liquid deuterium preferred over dual target
- RG-A data will be used to subtract proton contribution and/or evaluate neutron efficiencies:
 - > Same target cell as RG-A (5 cm long, single cell)
- Magnetic field settings: same as RG-A, for consistency
 - > 75% full torus field inbending, 25% full torus field outbending solenoid full field

For 90 days of running: 67 days inbending, 23 days outbending

- ✓ SIDIS proposals originally asked for 27 days outbending \rightarrow **OK**
- ✓ GMn proposal asked for 30 days inbending \rightarrow **OK**
- ✓ nDVCS originally asked for 90 days inbending \rightarrow **OK**
- ✓ SRC/EMC experiment asked for 90 days inbending \rightarrow **OK**

The relevant electrons of the SRC/EMC experiment will be in the middle of the CLAS12 acceptance

