F	ladro	n Spe	ectroscopy Working Group - I			
			or off line attendes: https://bluejeans.com/245508558			
Convener: Dr. Marco Battaglieri (INFN-GE) Location: L102-104						
0	8:40		VG business 20'			
		Spe	aker: Dr. Marco Battaglieri (INFN-GE)			
0	9:00		C update 20'			
		Spea	aker: Dr. Miguel Albaladejo (JLab)			
0	9:20		n Photoproduction and the Lambda Weak Decay Parameter 20'			
			aker: David Ireland (University of Glasgow)			
		Mate	erial: Slides 🔂			
0	9:40	Mea	surement of polarization observables for Lambda hyperon 20'			
		Spea	aker: Mr. Shankar Adhikari (Florida International University)			
		Mate	erial: Slides 🔂			
Had	Iron Sn	ectro	scopy Working Group - II			
			co Battaglieri (INFN-GE)			
Loca	ation:	L102-1	04			
10:30		-	of sources of dark noise from quart PMTs in JLab Hall B CLAS12 HTCC 20'			
	-		Isabella Illari (GWU)			
	Mat	terial:	Slides 🔂			
10:50	0 Be a 20'		ymmetry for photoproduced omega mesons off bound protons in deuterons			
	Spe	eaker:	Olga Cortes (Idaho State University)			
	Mat	terial:	Slides			
11:10	0 n p) -> d	pi0 from g12 data 20'			
	Spe	eaker:	Ken Hicks (Ohio University)			
11:30		-	on of Machine Learning to pi0 photoproduction from CLAS/g9a 20'			
	-		Mr. Kim Chan (George Washington University)			
	mai	terial:	Slides 🔂			
11:50		-	review status 30'			
1	-		Dr. Marco Battaglieri (INFN-GE)			
12:20	0 Dis	cussio	on 10'			

HSWG CLAS Collaboration Meeting JLab, Nov 15 2018

+ HS/Deep/Nuclear CLASI2 analyses joint session

Agenda

* CLAS6 data analysis + CLAS12 calibration effort

* Status of ongoing analysis (update from previous collaboration meeting)

* Dedicated (joint) session for CLAS12

Talks

- * Over all CLAS contributions, HSWG-related are 27% in 2018
- * Election of HSWG representatives in the CSC
 - A.d'Angelo (currently CSC chair)
 - L.Guo

* Many thanks to Eugene and Stefan for serving in the CSC

* JSA-TFC \$20k request for 2019

CLASI2-related Activities

- * Bi-weekly HSWG meeting focused on Low-Q2 specific needs:
 - FT Calibration (in coordination with the CALCOM and FirstExperiment)
 - MesonExTrigger studies
 - pld task force
 - review the status of current analysis (similar to Fall '18 DNP preparation)
- * Meeting on Tuesday at 11:00 (JLab-time) every other week
- * All groups are encouraged to look at the data (low/high level) to check calibration, possible issues, ...
- * List of ongoing analysis on HSWG wiki page

For discussion

- * Analysis framework
 - MesoneX framework (D.Glazier presentation)
 - alternatives?
- *Analysis tools validation (in coordination with other WG)
 - simple in a shared analysis frame
 - or ?
- * Analysis review optimization (strengthening the FEAR committee)
 - nominate two HSWG observers
 - nominate a reviewer for each analysis as link between with FEAR

Reaction	CLAS running period	Principal Investigator(s)	Graduate Student	Adviser(s)	Contact person(s)	Status
$\gamma^*p o \pi^0 p$ and eta p	RG-A	Andrea Bianconi, Luca Venturelli			mailto:andrea.bianconi@unibs.it 🖃	
Q2-dependent cross sections for $\gamma^*p o \pi^+\pi^-p$ at Q2 > 2 GeV2	RG-A	Krishna Neupane		Ralf Gothe		Underway
$\gamma^* p \to \pi^+ \pi^- p$	RG-A	Adam Thornton		Derek Glazier		Underway
Зрі	RG-A	Derek Glazier		Derek Glazier		No Signal Yet
rho beam asymmetry	RG-A	Michael Dugger		Michael Dugger		Underway
Survey of photoproduced cascade states	RG-A	Michael Dugger		Michael Dugger		No Signal Yet
survey of Cascade and Omega baryons	RG-A	Nicholas Zachariou		Nicholas Zachariou		Underway
Omega- cross section	RG-A	Will Phelps				Underway
Inclusive and elastic cross section studies	RG-A	Nikolay Markov			Nikolay Markov	Under way
Single pion electroproduction in the resonance region	RG-A	Nikolay Markov			Nikolay Markov	Under way
Single pion exclusive structure functions at Q2 > 5 GeV2	RG-A	Evgeny Isupov			Evgeny Isupov	Under way
$\gamma^*p \to \pi^+\pi^-p$ cross sections at Q2 > 5 GeV2	RG-A	Evgeny Golovach			Evgeny Golovach	Under way
Exclusive Two K-short electroproduction cross sections	RG-A	Ken Hicks			Ken Hicks	Just started
N* structure: KY cross section, pol. transfer at Q2 > 1 GeV2	RG-A	Daniel S. Carman			Daniel S. Carman	Under way
Extraction of the nucleon resonance electroexcitation amplitude from $\gamma^*p \to \pi^+\pi^-p$ electroproduciton off protons with the CLAS12.	RG-A	Viktor Mokeev			Viktor Mokeev	Under way
Evaluation of the resonant contribution into inclusive structure functions.	RG-A	Astrid Hiller Blin			Astrid Hiller Blin	Under way
eta.pi	RG-A	Carlos Salgado		Carlos Salgado		Did not start Yet (in January)
J/psi photoproduciton near threshold	RG-A	Stepan Stepanya	Joseph Newton	Nathan Baltzell, Rafayel Paremuzyan, Valery Kubarovsky		Analysis started
η' and ω decays					Susan Schadmand	Did not start yet

* CLASI2 data analysis

* List on HSWG wiki (<u>https://www.jlab.org/Hall-B/secure/hadron/wiki/index.php/CLASI2_Analysis_projects</u>)
* Keep it updated

Released

Polarization Observables in (Vector-)Meson Photoproduction (FROST) PI:V.Crede RC: K.Livingston (Chair), V.Mokeev Status: started on , I round done

New since last meeting

In progress

Measurement of the G Double-Polarisation Observable in Positive Pion Photoproduction

PI: L.Zana RC: S.Strauch (Chair), P.Cole, D.Sokhan Status: I round of comments sent on August, waiting for the response

Vector-Meson Photoproduction decaying to Multitrack-Final States using CLAS-g12 Data PI: Z.Akbar RC: John Price (Chair), Susan Schadmand , Eugene Pasyuk Status: started on Jan I, progressing, the committee received the author's response, NEED TO GIVE FEEDBACK ASAP

In progress

Exclusive pi- Electroproduction off the Neutron in Deuterium in the Resonance Region PI:Y.Tian

RC: Nikolay Markov (Chair), Mikhail Bashkanov, Eugene Isupov Status: Ist round in August, waiting for response from PI, response received, II round in preparation

Dalitz Plot Analysis of eta' to eta pi pi – from CLAS g12 Data Set

PI:S.Ghosh RC:V.Crede (chair), A.Rizzo, E.Pasyuk Status: Started in July'17; first round of comments on Sept 17: no response from the PI since then. Scarce communication with the review committee. Is the analysis dead ?????

Polarization Observables T and F in the $\vec{p}(\gamma, \pi 0)p$ Reaction

PI:H.Jiang RC: Barry Ritchie (Chair), Volker Crede , Bryan McKinnon Status: the group is working on major issue, new Aanalysis Note expected by the end of the month

Photoproduction of the 3π mesons in the reaction $\gamma p \rightarrow \pi + \pi + \pi - n$ with

CLAS detector at 6 GeV/c2

PI:P.Eugenio RC: D.Glazier (chair), A.Filippi, M.Dugger Status: 2nd round, response received, almost done

7

Pentaquark search in g10 by using the MMSA method

PI: Kenneth Hicks et al. RC: Stepan Stepanyan (Chair), Lei Guo , Bryan McKinnon Started Aug 2015 Status: NO progress

KLambda and KSigma from FROST

PI: N.Walforf et al.
RC: S.Strauch, M.Holtrop, P.Mattione,
Started May 2015
I round of comments in May 2015, waiting for a revised Status: stalled for a long while, now it seems to be resurrected, unfortunately NO, no news ...
Should we give the analysis to another group?

Exclusive Photo-Production Measurement of K+Sigma*- off Quasi-Free Neutrons in Deuterium

PI: H.Lu (SCU) et al. RC: N.Zachariou, M.Dugger, D.MacGregor Started in 2012 (!) Status: ??????????

Actions

- * Remove these analyses from the list of active analyses
- * Share this information to the whole HSWG to see if ay resources could be allocated
- to continue (assuming full collaboration from the former PI!)

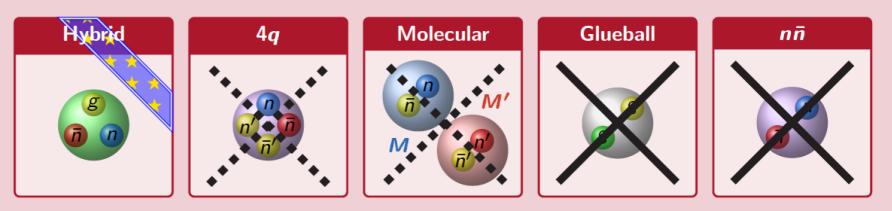
Radiative decay of eta' to pi+ pi- gamma from gl l

data set PI:G. Mbianda Njencheu RC: R. Schumacher,S.Schadmand,A.Celentano Status: no response in many months ?????

Spin observables in eta meson photoproduction on the proton from FROST data

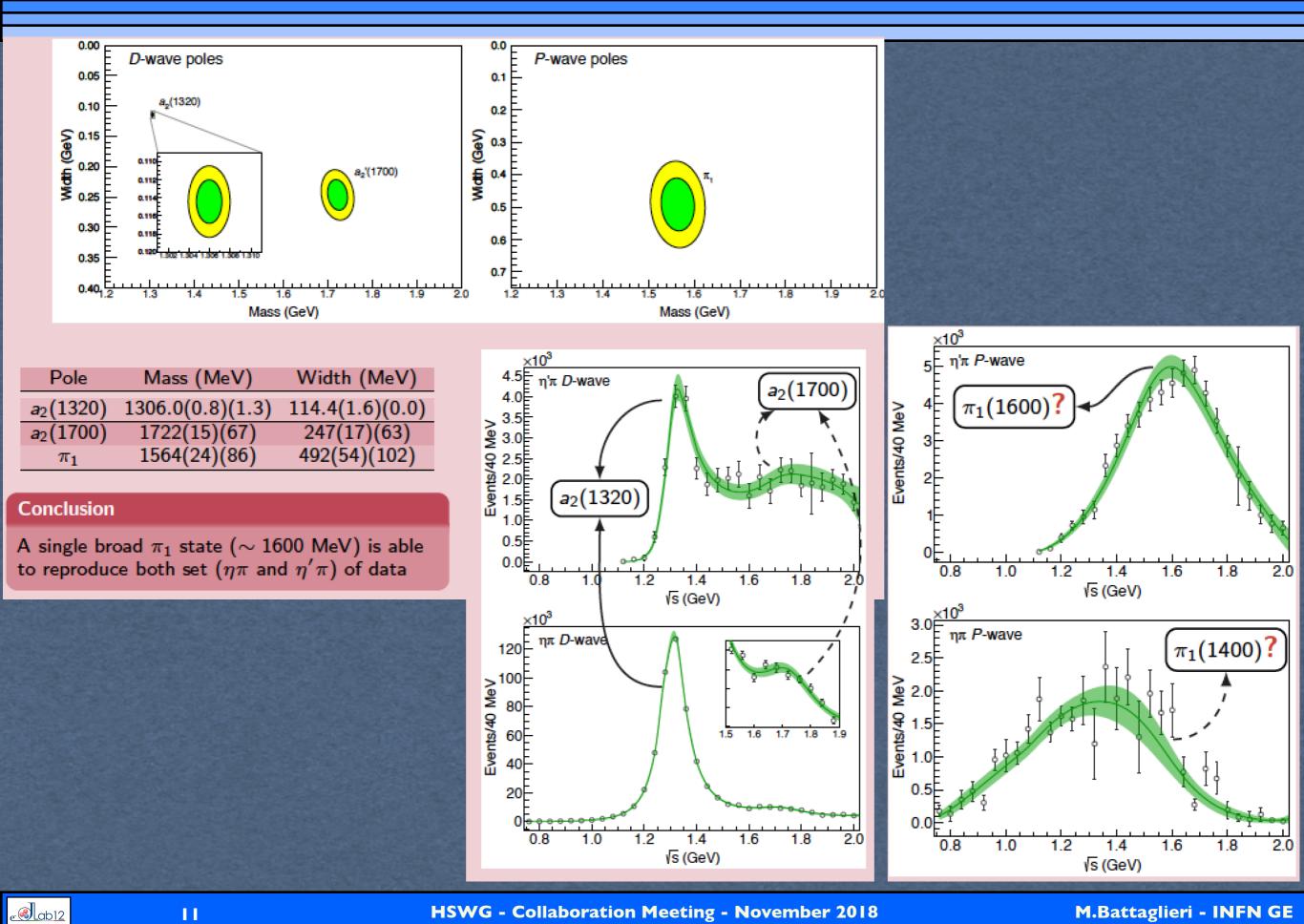
RI: R.Tucker (ArizonaU) et al. RC: MLivingston, J.Price, Xiangdong Wei Sterted July 2016 Status: on-hold, still on-hold but authors are alive, paused for a while, still on-hold, ..

	Had	dron Spectroscopy Working Group - I				
	Blue	jeans link for off line attendes: https://bluejeans.com/245508558				
	Con	vener: Dr. Marco Battaglieri (INFN-GE)				
	Loc	ation: L102-104				
	08:4	0 HSWG business 20'				
		Speaker: Dr. Marco Battaglieri (INFN-GE)				
	09:0	0 JPAC update 20'				
		Speaker: Dr. Miguel Albaladejo (JLab)				
	09:2	⁰ Kaon Photoproduction and the Lambda Weak Decay Parameter 20'				
		Speaker: David Ireland (University of Glasgow)				
		Material: Slides 📆				
	09:4					
		Speaker: Mr. Shankar Adhikari (Florida International University)				
		Material: Slides 🔂				
	Hadro	n Spectroscopy Working Group - II				
	Convener: Dr. Marco Battaglieri (INFN-GE)					
	Location: L102-104					
	10:30	Analysis of sources of dark noise from quart PMTs in JLab Hall B CLAS12 HTCC 20'				
		Speaker: Isabella Illari (GWU) Material: Slides 📆				
	10:50	Beam Asymmetry for photoproduced omega mesons off bound protons in deuterons 20'				
		Speaker: Olga Cortes (Idaho State University)				
		Material: Slides 🔛				
	11:10	n p -> d pi0 from g12 data 20'				
		Speaker: Ken Hicks (Ohio University)				
	11:30	Application of Machine Learning to pi0 photoproduction from CLAS/g9a 20'				
		Speaker: Mr. Kim Chan (George Washington University)				
		Material: Slides 🔁				
	11:50	Analysis review status 30'				
	10.00	Speaker: Dr. Marco Battaglieri (INFN-GE)				
9	12:20	Discussion 10'				
e	lab12	9 HSWG - Collaboration Meeting				



Miguel Albaladejo (Jefferson Lab – Theory Center)

November 15, 2018


π_1 : Introduction

- $J^{PC} = 1^{-+}$ discards $q\bar{q}$
- I = 1 discards glueball.
- Molecular interpretation is very difficult.
- Tetraquark? Hybrid?
 - $\pi_1(1600)$ is consistent with the expected lightest hybrid (1.7 1.9 GeV).
 - $\pi_1(1400)$ could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...

We study COMPASS data $(\pi p \rightarrow \eta^{(\prime)} \pi p)$ to shed some light into the π_1 puzzle

HSWG - Collaboration Meeting - November 2018

Polarized moments: summary

MA, V. Mathieu et al. (JPAC), in preparation

• Expand $T_{\lambda;\lambda_1,\lambda_2}$ in $\eta\pi$ partial waves:

$$T_{\lambda;\lambda_1,\lambda_2}(\Omega) = \sum_{\ell,m} T_{\lambda;\lambda_1,\lambda_2}^{\ell m} Y_{\ell}^m(\Omega) ,$$

Introduce polarized intensities:

$$I(\Omega, \Phi) = I^0(\Omega) + \vec{P}_{\gamma}(\Phi) \cdot \vec{I}(\Omega)$$
.

• Decompose $I^{lpha}(\Omega)$ into moments $H^{lpha}(LM)$,

$$I^{\alpha}(\Omega) = \sum_{L,M} \frac{2L+1}{4\pi} H^{\alpha}(LM) D^{L*}_{M0}(\Omega)$$
$$H^{\alpha}(LM) = \int d\Omega \ I^{\alpha}(\Omega) \ D^{L}_{M0}(\Omega) \ .$$

• SDME for arbitrary
$$\ell, \ell'$$

F

$$(\rho_{\alpha})_{mm'}^{\ell\ell'} = \sum_{\substack{\lambda,\lambda'\\\lambda_{1},\lambda_{2}}} T_{\lambda;\lambda_{1},\lambda_{2}}^{\ell m} \frac{\sigma_{\lambda\lambda'}^{\alpha}}{2} T_{\lambda';\lambda_{1},\lambda_{2}}^{\ell'm'*}$$

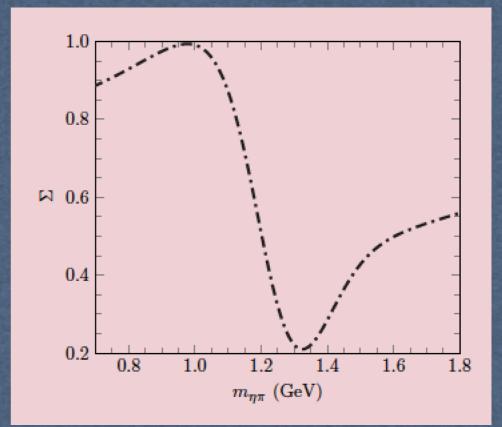
• Express $H^{\alpha}(LM)$ in terms of SDME:

$$\mathcal{M}^{\alpha}(LM) = \sum_{\substack{\ell,\ell' \ m,m'}} \left(\frac{2\ell'+1}{2\ell+1} \right) \left\langle \ell'0, L0 \right| \left| \ell 0 \right\rangle \times \left\langle \ell'm', LM \right| \left| \ell m \right\rangle (\rho_{\alpha})_{mm'}^{\ell\ell'}$$

MA, V

Simplifying assumptions:

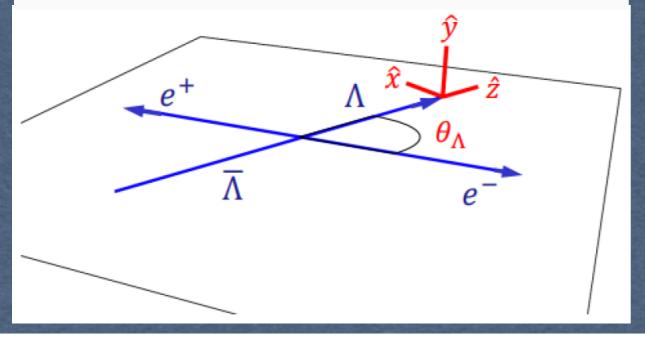
• $\ell_{\max} = 2$ in $\eta \pi$ system $(L_{\max} = 4$ in H(LM)),


• $|\lambda - m| \leq 1$,

- Only positive naturality waves are included,
- Three resonances are included: a₀(980), π₁(1600), a₂(1320).

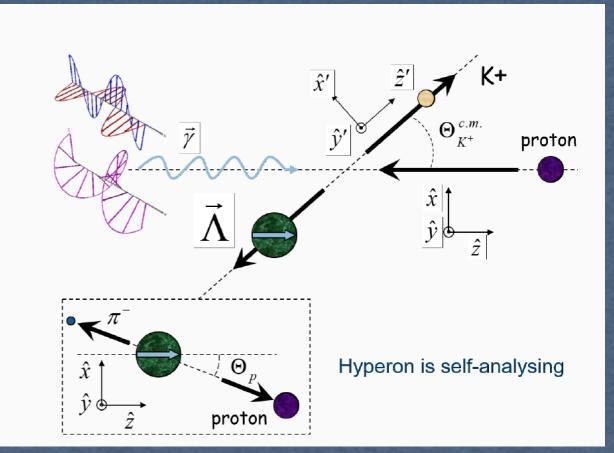
Beam asymmetry Σ :

$$\int \mathrm{d}\Omega \ I(\Omega, \Phi) \equiv \sigma^0 \left(1 + P_\gamma \Sigma \cos(2\Phi)\right)$$


Kaon Photoproduction and the A Weak Decay Parameter

CLAS HSWG meeting

D.G. Ireland


15 November, 2018

The Recent **BESIII** Result

$$\begin{split} \mathcal{W}(\boldsymbol{\xi}; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) = & 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} \\ & + \alpha_{-} \alpha_{+} \left[\sin^{2} \theta_{\Lambda} \left(n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,y} n_{2,y} \right) + \left(\cos^{2} \theta_{\Lambda} + \alpha_{\psi} \right) n_{1,z} n_{2,z} \right] \\ & + \alpha_{-} \alpha_{+} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(n_{1,x} n_{2,z} + n_{1,z} n_{2,x} \right) \\ & + \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(\alpha_{-} n_{1,y} + \alpha_{+} n_{2,y} \right), \end{split}$$

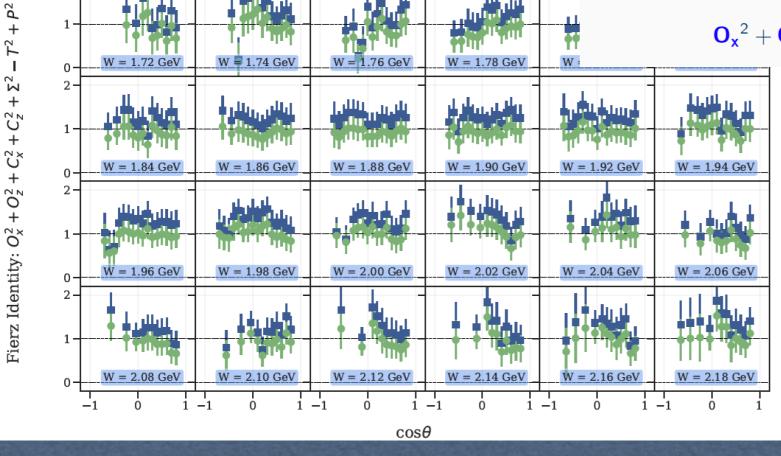
Kaon Photoproduction - $K\Lambda$ example

sults 7 [25]
.3 [27]
[27]
1 [27]
)

Consequences for Observables from g8 and g1c?

Experimental Polarization Configurations:

LUY: Linear photon beam; unpolarized target; measured recoil Intensity:


$$1 + \alpha_{-} \cos \theta_{y} \mathbf{P} - \{ \mathbf{\Sigma} + \alpha_{-} \cos \theta_{y} \mathbf{T} \} P_{L}^{\gamma} \cos 2(\alpha - \phi) \\ + \{ \alpha_{-} \cos \theta_{x} \mathbf{O}_{\mathbf{x}} + \alpha_{-} \cos \theta_{z} \mathbf{O}_{\mathbf{z}} \} P_{L}^{\gamma} \sin 2(\alpha - \phi)$$

CUY: Circularly photon beam; unpolarized target; measured recoil Intensity:

$$1 + \boldsymbol{\alpha}_{-} \cos \theta_{y} \mathbf{P} + (\boldsymbol{\alpha}_{-} \cos \theta_{x} \mathbf{C}_{x} + \boldsymbol{\alpha}_{-} \cos \theta_{z} \mathbf{C}_{z}) P_{C}^{\gamma}$$

$$\mathbf{O_x}^2 + \mathbf{O_z}^2 + \mathbf{C_x}^2 + \mathbf{C_z}^2 + \mathbf{\Sigma}^2 - \mathbf{T}^2 + \mathbf{P}^2 = 1$$

ان ان الانتقادا

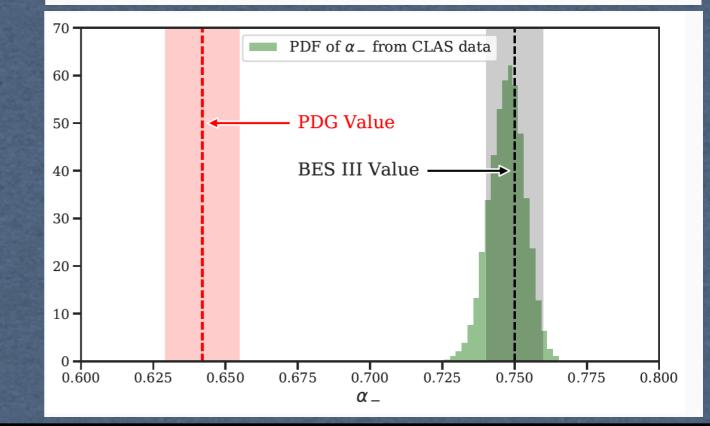
Using New Weak Decay Parameter for Jülich-Bonn Fits

Observable	χ^2/n (Jül	Bo2017)	χ^2/n (Refit)		
(# data points)	unscaled	scaled	unscaled	scaled	
$d\sigma/d\Omega$ (421)	2.65	2.65	1.11	0.96	
Σ (314)	5.00	5.00	2.55	2.48	
T(314)	1.96	3.00	1.75	1.29	
P(410)	1.49	0.91	1.84	1.28	
C_x (82)	1.99	1.56	2.15	1.30	
C_z (85)	1.95	1.12	1.58	1.34	
O_x (314)	1.63	2.00	1.44	1.18	
O_z (314)	1.62	1.64	1.34	1.23	
all (2254)	2.33	2.38	1.67	1.37	

Source	Value				
PDG	0.642 ± 0.013				
BES III	$0.750\pm0.009\pm0.004$				
CLAS	0.747 \pm 0.006 (uniform)				
CLAS	$0.731\pm0.014~(\text{gaussian})$				

- New BES III result for α_- is 17% higher than PDG value
- Affects all recoil observables relying on Λ weak decay
- CLAS data corroborates BES result
- Previous physics interpretations are \sim safe
- Preliminary calculation shows CLAS data can independently determine α_{-}
- More checks and cross-validation to do...

15


Measuring α_{-} from g8 and g1c data?

Define function

$$\mathcal{F}(a, l, c) = a^2 l^2 \left(\mathbf{O_x}^2 + \mathbf{O_z}^2 - \mathbf{T}^2 \right) + a^2 c^2 \left(\mathbf{C_x}^2 + \mathbf{C_z}^2 \right) + l^2 \mathbf{\Sigma}^2 + a^2 \mathbf{P}^2$$

where a, l, c are the relative calibrations (i.e. systematics) for α_{-} , linear photon polarization and circular polarization, resp.

- Impose $\alpha_{-} \geq 0$
- Quoted systematic uncertainties in P_{γ}^{L} are 3-6% (use 5)
- Quoted systematic uncertainties in P_{γ}^{C} are 2% (use 2%)
- Which PDF to use? Gaussian $\mathcal{N}(1,\sigma)$? Uniform $\mathcal{U}(1-\sigma,1+\sigma)$?

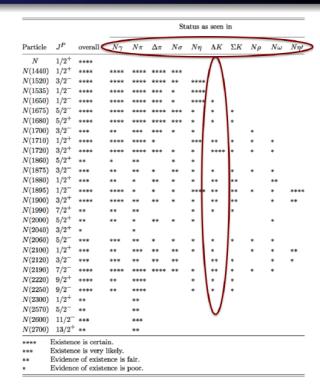
Measurement of polarization observables for Λ hyperon.

Shankar Adhikari

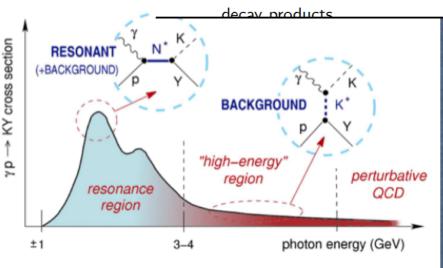
- γp → K⁺Λ; resonant and non-resonant process. Significant background from non-resonant processes which are entangled with resonant processes. Crucial to understand non-resonant process.
- C_x and C_z: E_γ up to 5.45 Gev or W up to 3.33 GeV (previously 2.5 GeV)
- *P*: *W* up to 3.33 GeV (previously 2.8 GeV)

Missing Baryon Problem and $K^+\Lambda$ channel

From an experimental point-of-view;

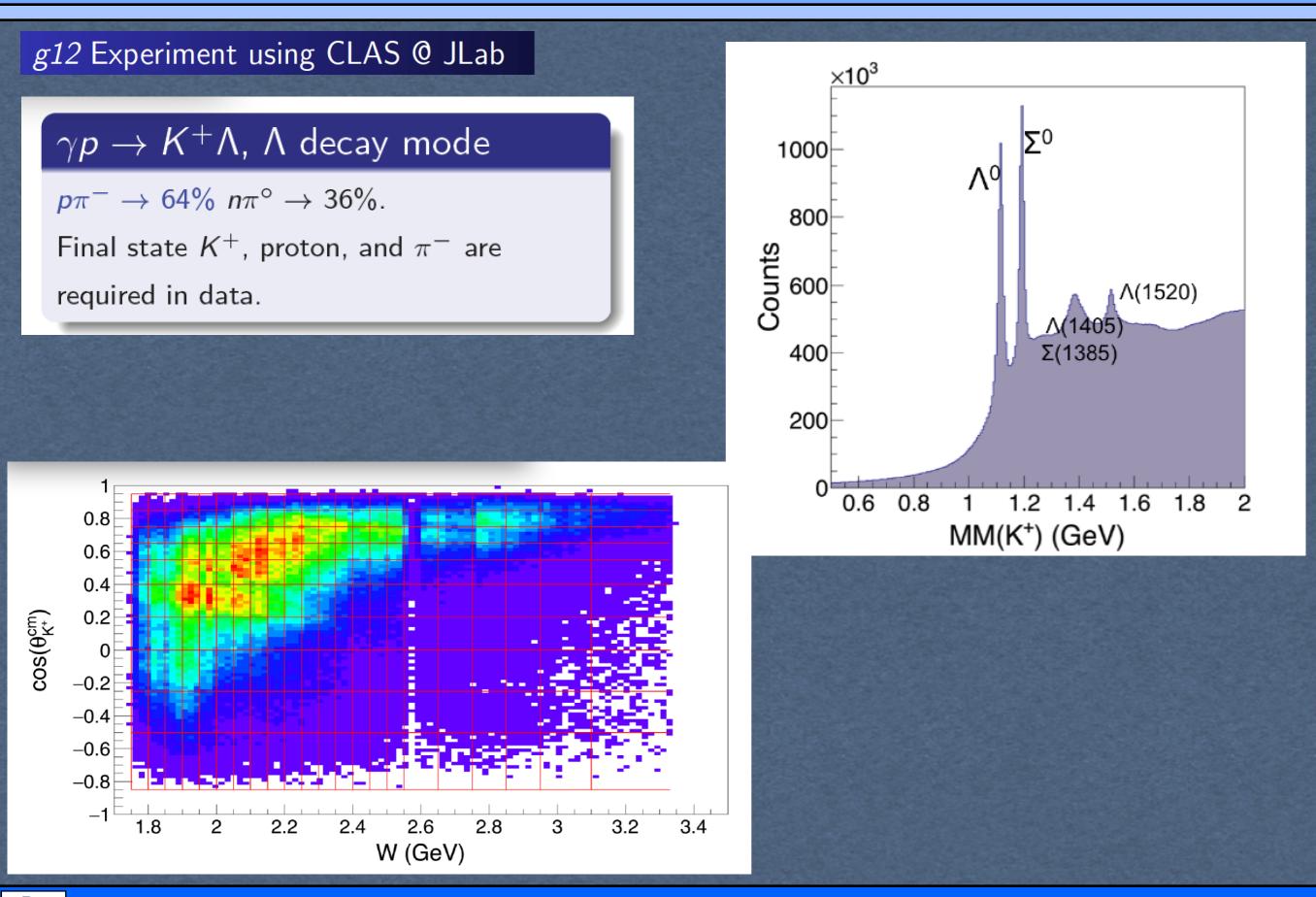

- Pion beams was the primary tool to study resonances. It is predicted that the high-mass resonances predominantly couple to γ beams.
- Not all resonances couple strongly to the $N\pi$ channel; coupled to other channels as well.
- Interference of states: Resonances are broad and overlapping, possible interference between N and Δ states.
- $\gamma p \rightarrow K^+ \Lambda$ channel is important that;

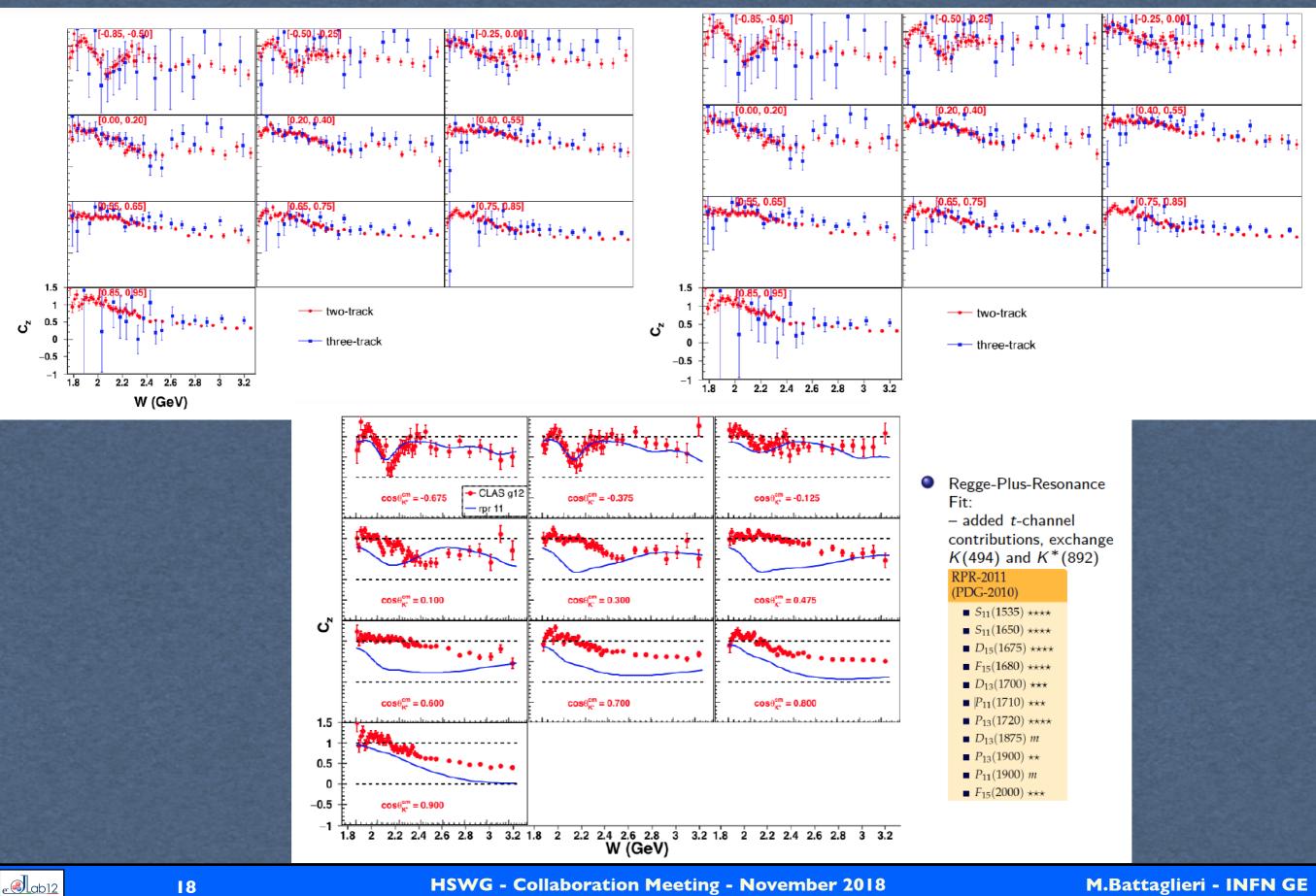
- only contribute to N^* with I = 1/2.


- $\Lambda
ightarrow p\pi^-$, self-analyzing nature of

 Λ hyperon allow us to measure

polarization observables from its

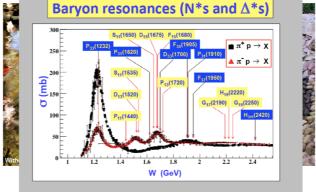


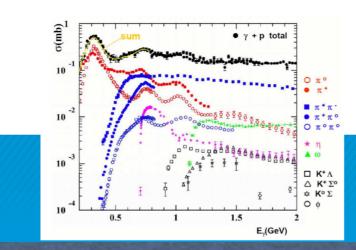

... polarization observables are sensitive to the interefence from different states and different processes

credit: T. Corthals

16

HSWG - Collaboration Meeting - November 2018


THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC


Beam Asymmetry for photoproduced ω mesons off bound protons in deuterons

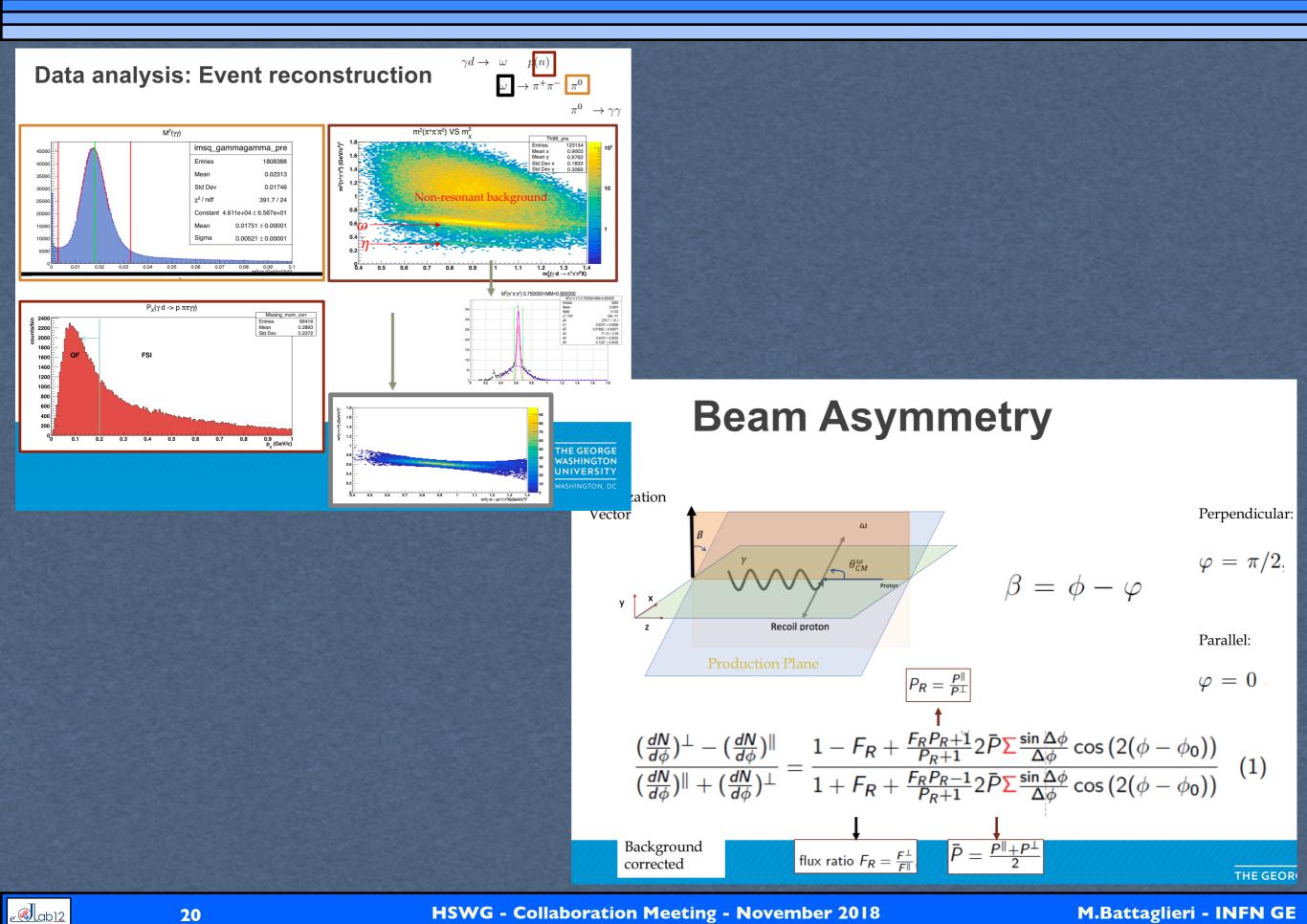
Olga Cortes Becerra

Motivation

Hadron spectroscopy

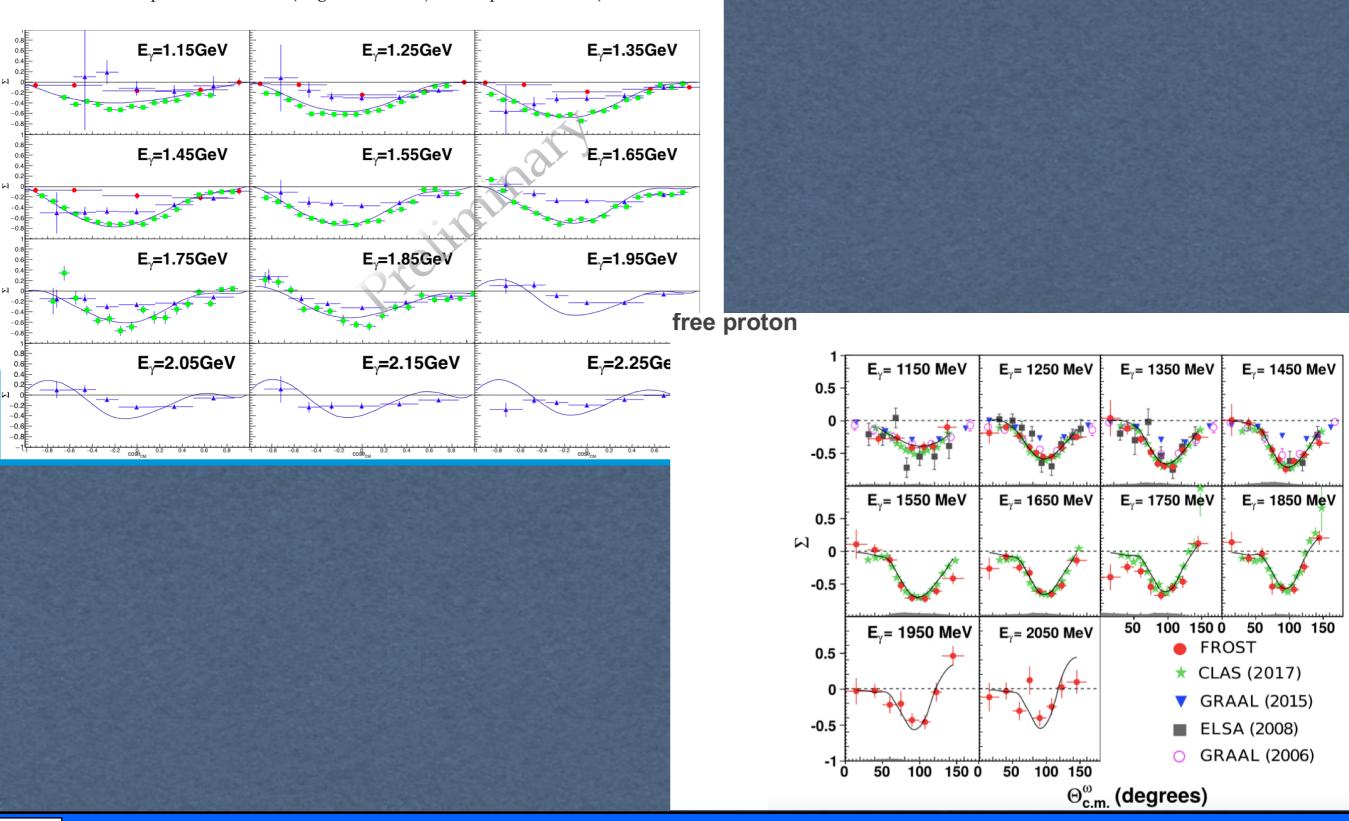
Bound nucleon

- There are some technicalities that have to be taken into account:
 - Fermi momentum smearing the distributions
 - Moving to the <u>CoM</u> frame has to take into account the Fermi momentum
 - All particles have to be detected
- How we treat the bound proton will give us a hint on how to treat bound neutron data (all neutron data)


THE GEORGE WASHINGTON UNIVERSITY

g13b:

- Real photon. $E_{\gamma} = 1.1 2.3 \text{ GeV}$
- Linearly polarized photons: Coherent
 Bremsstrahlung
- 40 cm deuterium target



HSWG - Collaboration Meeting - November 2018

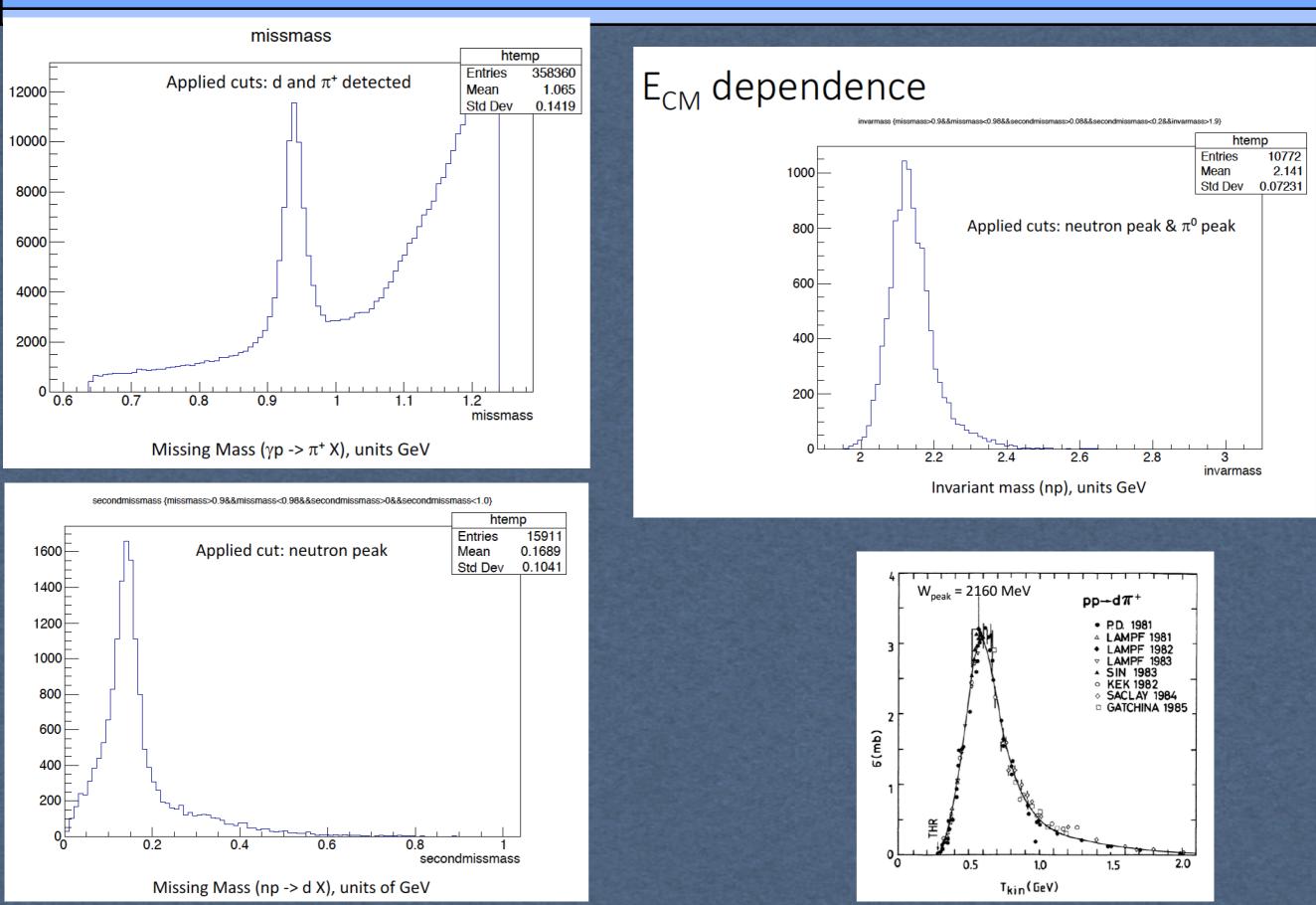
Preliminary Results

▲ This work • quasi free GRAAL (Vegna et al. 2015) ■ Free proton CLAS (Collins et a..2015

21

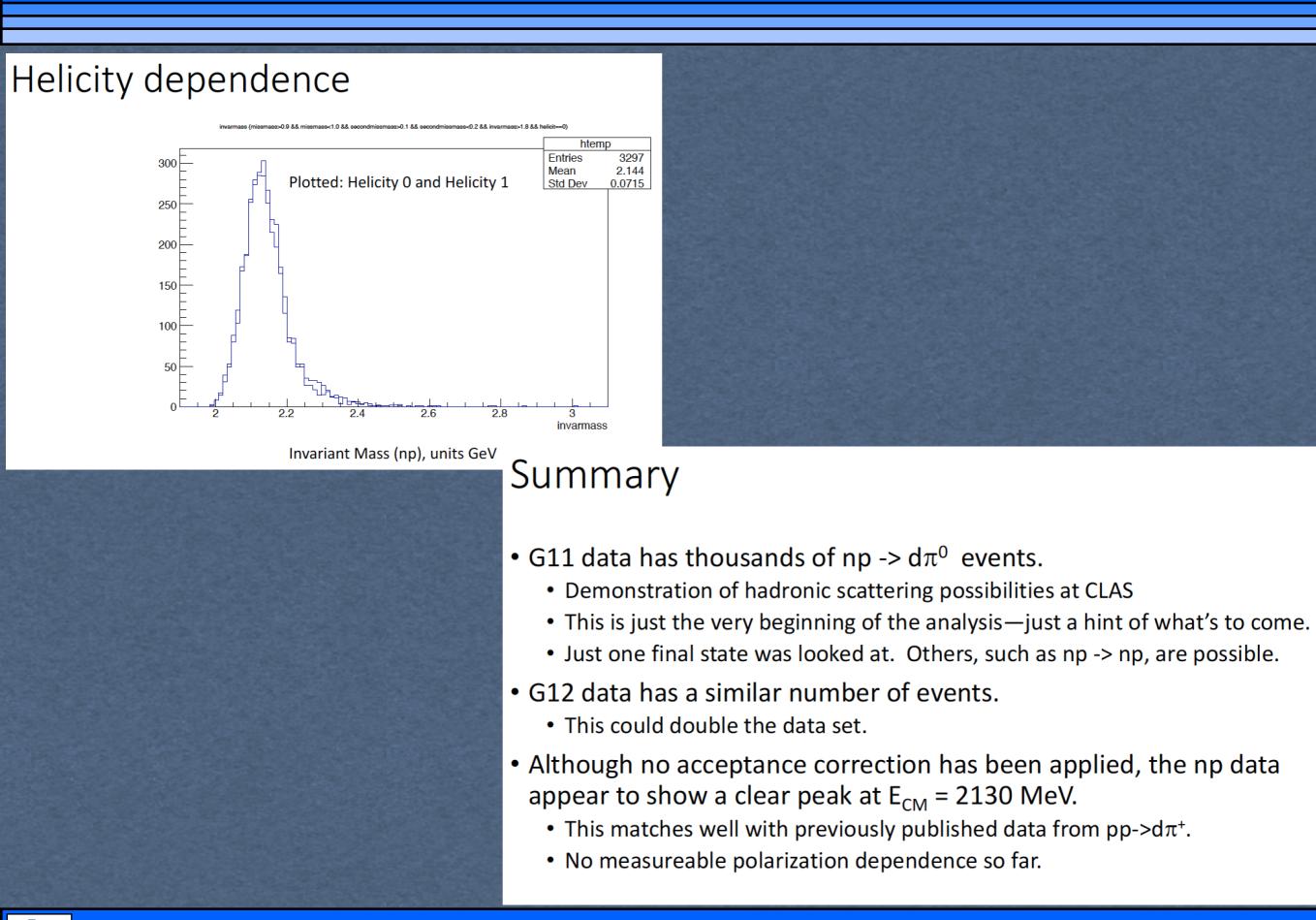
e. @lab12

HSWG - Collaboration Meeting - November 2018


Hadronic reactions using g11 n p \rightarrow d π^0

Nick Compton* and Ken Hicks (Ohio U)

and the second se		Contraction of the local distance of the loc	and the second	COMPANY OF THE OWNER	
_	 	-			


- Long LH2 target (40 cm) provides secondary scattering
 - Demonstrated for $\gamma p \rightarrow K^+\Lambda$ followed by $\Lambda N \rightarrow \Lambda N$ elastic scattering.
 - In principle, any hadronic reaction can be studied at CLAS
 - John Price: K_s rescattering possible (HYP2018 talk)
 - Two experiments have similar statistics: g11 and g12.
- Motivation for np $\rightarrow d\pi^0$ scattering:
 - Improve on previous cross sections (mostly via pp \rightarrow d π^+)
 - Look for possible polarization observables (depends on n-production)
 - Possible (?) to utilize this to measure n-polarization in $\gamma p \rightarrow \pi^+ n$.
- Data set: g11 (LH2 target, 40 cm ieiigui)
- Step 1: γp → π⁺(n)
 - Detected: π^+ .
 - Missing mass: M_n . Cut on the neutron peak.
- Step 2: np \rightarrow d π^0
 - Detected: d.
 - Missing mass: M_{π} . Cut on the π^0 peak.
 - Plot: E_{CM} -dependence. Expect a peak at about E_{CM} = 2150 MeV.

e. @Lab12

23

Application of Machine Learning to π_0 photoproduction from CLAS/g9a

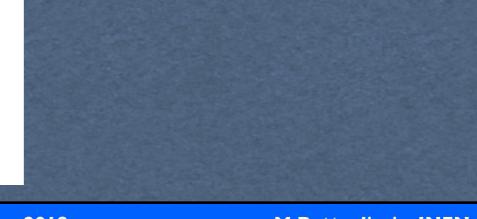
Chan Kim

The George Washington University Igor Strakovsky and William Briscoe

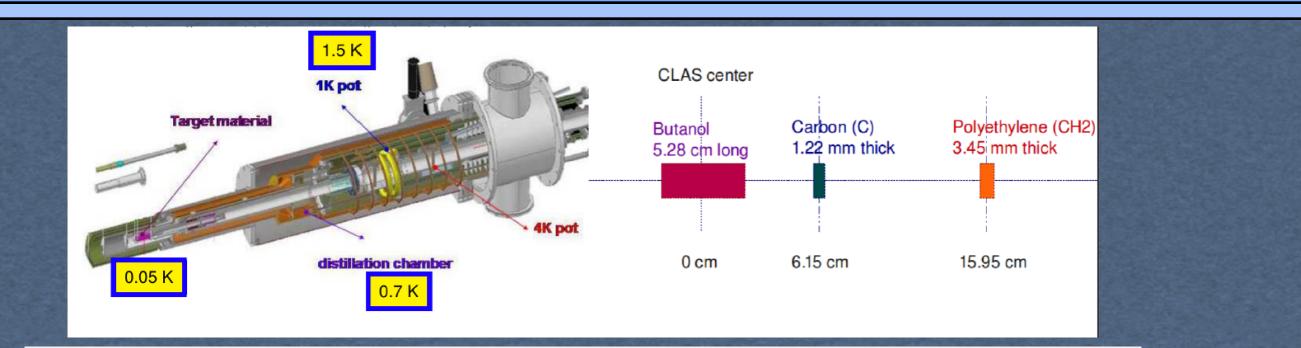
CLAS g9a/FROST Experiment

o Polarization Observables → Helicty Amplitudes → Resonances (PWA)
 o Polarizable: Incoming photons, target & recoiling nucleons

_		UP_T and UP_R	UP_T and P_R	P_T and UP_R	P_T and P_R
_	UP _B	$\frac{d\sigma}{d\Omega}$	Р	Т	$T_{x'}, T_{z'}, L_{x'}, L_{z'}$
_	LPB	$-\Sigma$	$O_{x'}, (-T), O_{z'}$	H, (-P), -G	
_	CPB		$-C_{x'}, -C_{z'}$	<i>F</i> , – <i>E</i>	


UP, P, LP, CP, B, T, R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.

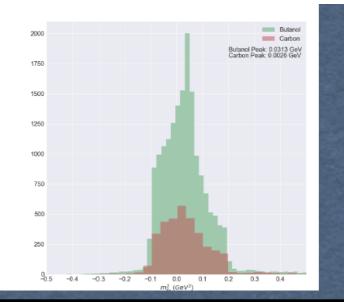
o g9a/FROST - Circularly polarized photons with $E_{\gamma} \approx 0.4 - 2.4$ GeV and longitudinally polarized proton target:

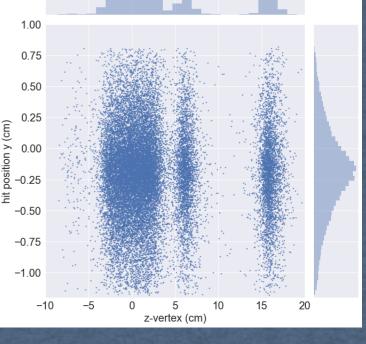

Helicity Asymmetry E

• Double polarization observable E is the helicity asymmetry of the cross section:

$$E = \frac{\sigma_{3/2} - \sigma_{1/2}}{\sigma_{3/2} + \sigma_{1/2}} \qquad \text{for } \frac{3}{2} \& \frac{1}{2} \text{ are total helicty states}$$

ML Objectives: Target Selection & Ice on Carbon


o Ice on Carbon


- Carbon events (bound-nucleon) expected to have broader $m_{\pi_0}^2$ peak due to Fermi motion.
- Sharp peak (free-nucleon) observed in the Carbon target region. Carbon events are scaled by ~10.


26

Target Selection

 Events with z-vertex ∈ [2, 5]cm, uncertain whether γ hit Butanol or Carbon

e. @lab12