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Introduction
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For the fixed kinematic point ( Q2 ,  xBj. ,  -t , 𝜙 ) the born and radiative cross sections 
together with the probabilities for two-photon emission were calculated by:

    I. Akushivich, A. Ilyichev    Phys. Rev. D85, 053008 (2012)  

    I. Akushivich, A. Ilyichev, M. Shumenko    Phys. Rev. D90, 033001 (2014)

Implementation of radiative smearing for the final state particles. 

Our goal is to simulate radiative effects for DVCS (BH) in a common framework of CLAS12 
or CLAS MC reconstruction.

Studies of the radiative smearing from the reconstructed MC sample.   
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Basic notations
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where ty ¼ t −Q2 ¼ w0 − u0, tw ¼ t − w0, tu ¼ tþ u0,
and ΦðxÞ is the Spence function defined as

ΦðxÞ ¼ −
Z

x

0

log j1 − tj
t

dt:

The remaining one-loop contribution represents the
effect of vacuum polarization and is given by the graphs
in Figs. 2(i) and 2(j). The contribution is factorized:

Lvac
μν ¼ 2ΠðtÞLBH

μν ¼ α
π
δvacLBH

μν ; ð37Þ

where the polarization operator has the standard form given
in Ref. [7].

IV. DOUBLE BREMSSTRAHLUNG
CROSS SECTION

The cross section of two-photon emission, i.e., the
process

eðk1; ξÞ þ pðp; ηÞ ⟶ e0ðk2Þ þ p0ðp0Þ þ γðκ1Þ þ γðκ2Þ;
ð38Þ

is

dσ ¼ 1

4S

!X6

i¼1

Mi

"
2

dΓ; ð39Þ

where the additional factor 2 in the denominator is because
there are two identical particles (photons) in the final state.
Phase space is parametrized as [4]

dΓ ¼ 1

ð2πÞ8
d3k2
2E2

d3p0

2p0
0

d3κ1
2ω1

d3κ2
2ω2

× δ4ðk1 þ p − k2 − p0 − κ1 − κ2Þ

¼ 1

ð2πÞ3
dΓ0dV2dΓ2γ; ð40Þ

where V2 ¼ κ2 ¼ ðκ1 þ κ2Þ2 is the invariant mass of the
two photons, and dΓ0 is given by Eq. (3); κ denotes the
four-momentum of the “heavy” photon, i.e., the photon
with the mass

ffiffiffiffiffiffi
V2

p
. Thus, in this parametrization the phase-

space element for two photons is factorized into that of the
BH process and an additional phase space dV2dΓ2γ , where

dΓ2γ ¼
dκ1
2ω1

dκ2
2ω2

δðκ − κ1 − κ2Þ

¼ 1

8
dΩR ¼ 1

8
d cos θRdϕR: ð41Þ

The angles θR and ϕR define the orientation of the momenta
of photons in the system where κ ¼ 0, i.e., in the two-
photon central-mass system. The energies of the photons

are equal in this system and equal V=2. An integration over
dV2dΓ2γ needs to be performed to obtain the RC to the BH
cross section (2).
The maximal value of the invariant mass of two

photons V2
m is defined by kinematics or can be affected

by experimental cuts. In the former case the expression for
V2
m is

V2
m ¼

ffiffiffiffiffiffiffiffi
λtλY

p
− Sxt

2M2
−Q2 − t; ð42Þ

where λt ¼ t2 þ 4tM2.
Six matrix elements of the process with emission of an

additional photon corresponding to graphs in Fig. 3 are
denoted M1−6 ¼ e4t−1JhμJ1−6;μ. The quantities J1−6;μ,
proportional to the leptonic currents, are

J1μ ¼ ū2γμ
k̂1 − κ̂ þm
−2κk1 þ V2

ϵ̂2
k̂1 − κ̂1 þm
−2k1κ1

ϵ̂1u1;

J2μ ¼ ū2γμ
k̂1 − κ̂ þm
−2κk1 þ V2

ϵ̂1
k̂1 − κ̂2 þm
−2k1κ2

ϵ̂2u1;

J3μ ¼ ū2ϵ̂2
k̂2 þ κ̂2 þm

2k2κ2
ϵ̂1
k̂2 þ κ̂ þm
2κk2 þ V2

γμu1;

J4μ ¼ ū2ϵ̂1
k̂2 þ κ̂1 þm

2k2κ1
ϵ̂2
k̂2 þ κ̂ þm
2κk2 þ V2

γμu1;

J5μ ¼ ū2ϵ̂1
k̂2 þ κ̂1 þm

2k2κ1
γμ

k̂1 − κ̂2 þm
−2k1κ2

ϵ̂2u1;

J6μ ¼ ū2ϵ̂2
k̂2 þ κ̂2 þm

2k2κ2
γμ

k̂1 − κ̂1 þm
−2k1κ1

ϵ̂1u1: ð43Þ

The total leptonic current is

J2γμ ¼
X6

i¼1

Jiμ: ð44Þ

The matrix element squared can be represented in terms of
leptonic and hadronic tensors. The former is defined as

Lμνðκ1; κ2Þ ¼ Tr
X

J2γμ J
2γ†
ν ð45Þ

FIG. 3. Feynman graphs of real two-photon emission.

AKUSHEVICH, ILYICHEV, AND SHUMEIKO PHYSICAL REVIEW D 90, 033001 (2014)

033001-6

The cross section of two photon emission is calculated under the assumption, that the 
second photon is unobserved ( s & p peaks ).  
Second photon is collinear with either incoming or scattered electron.  

)
generalized 
notation

z1 = 1 for the p peak

z2 = 1 for the s peak

(

�2 = k2z
�1
2 � k2

�1 = k1 � z1k1
� = z�1

2 k� z1k

Q2
true =

z1Q2

z2
xtrue =

Q

2
true
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0
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�1
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Q

2
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Definition of final state particles
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ðJ1! þ J6!ÞðJ2" þ J3" þ J4" þ J5"Þy þ H:c:

¼ JBH! ðz1k1; k2ÞðJBH" ðz1k1; k2ÞÞy
2

k1#1ð1% z1Þ
: (27)

Calculating the term with J1! þ J6! squared, the poles
have to be extracted in the form of 1=k1#1 andm

2=ðk1#1Þ2,
and only then the substitutions (24) and m ¼ 0 can be
used everywhere except in k1#1 in the denominator. This
results in

ðJ1! þ J6!ÞðJ1" þ J6"Þyj#1!ð1%z1Þk1

¼ JBH! ðz1k1; k2ÞðJBH" ðz1k1; k2ÞÞy
1% z1
z1ðk1#1Þ

: (28)

We finally have in leading approximation:

M2
1s ¼

4$%

k1#1
M2

BHðz1k1; k2Þ
1þ z21

z1ð1% z1Þ
: (29)

In the case when the unobserved photon is emitted
parallel to the final electron the scalar product k2#1 is
small. For this case it is assumed that #1 ¼ ðz%1

2 % 1Þk2
resulting in

M2
1p ¼ 4$%

k2#1
M2

BH

!
k1;

k2
z2

"
1þ z22
1% z2

: (30)

B. Phase space and shifted kinematics

The photon four-vectors appear in denominators of (29)
and (30) in the form of scalar products k1#1 and k2#1. Two
integrals over phase space of two photons are

Z d3#1

2!1

d3#2

2!2

&ð!% #1 % #2Þ
k1#1

¼
Z d3#1

2!1

&ð!2 % 2!#1Þ
k1#1

¼ $L

w
;

Z d3#1

2!1

d3#2

2!2

&ð!% #1 % #2Þ
k2#1

¼
Z d3#1

2!1

&ð!2 % 2!#1Þ
k2#1

¼ $L

u
; (31)

where ! ¼ k1 þ p% k2 % p0, w ¼ 2k1!, and u ¼ 2k2!.
Only terms containing the large (or leading) logarithm L
are kept. The results (31) are immediately obtained if we
consider the system of the center of mass of two photons
(! ¼ 0) with the z axis directed along k1 and k2,
respectively.

The phase space of the final proton is parametrized as

d3p0

2p0
0

¼
ffiffiffiffiffi
't

p

8M2 dtd(d cos)0 ¼ dtd(dV2

4
ffiffiffiffiffiffi
'Y

p ; (32)

where V2 ¼ !2 and )0 is the angle between q and p0. The
relation

V2 ¼ tSx
2M2 þ t%Q2 þ

ffiffiffiffiffiffi
'Y

p ffiffiffiffiffi
't

p

2M2 cos)0 (33)

was used to obtained the parametrization in terms of V2.
Finally the integration over d" is

Z d"

k1#1
¼ d"0

L

8$2w
dV2;

Z d"

k2#1
¼ d"0

$L

8$2u
dV2:

(34)

The matrix elements squared for s- (and p-) peak con-
tributions in Eqs. (29) and (30) are expressed in terms of z1
and z2; therefore the variable V2 (and cos)0) has to be
related to these variables. The equation for establishing this
relation is obtained from the condition in the &-function
argument of intermediate expressions in (31) by using the
representation for #1 used in Sec. III A, i.e., #1 ¼ ð1%
z1Þk1 for the s peak and #1 ¼ ðz%1

2 % 1Þk2 for the p peak.
Below for the representation of this equation and its solu-
tion we use the generalized notation including both z1 and
z2. Substitution z2 ¼ 1 (z1 ¼ 1) has to be used to formally
extract the s-peak (p-peak) contribution. Also we define
the four-vector qz: qz ¼ z1k1 % k2 for the s peak, qz ¼
k1 % z%1

2 k2 for the p peak, and qz ¼ z1k1 % z%1
2 k2 in the

generalized notation. The meaning of the used vectors is
clarified in Fig. 3. Vector qz has the meaning of a ‘‘true’’
transferring momentum in the case of an additional photon
emitted. The vector is in the plane OXZ; its projection into
the OX and OZ axes is always negative and positive,
respectively. Its magnitude is always less than that of q.
The equation for establishing the relation between z1, z2,
and V2 in terms of introduced notation reads

!2 % 2!ðq% qzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
't'Yz

p

2M2 ðcos #)% AÞ ¼ 0; (35)

where cos #) is the angle between qz and p0. It is expressed
in terms of the angle between q and qz (denoted by )z) as

k

q

k

φ

1

2

z

x

y

p’
q z

θ’

θz

FIG. 3. Definitions of vectors and angles in the laboratory
frame

RADIATIVE EFFECTS IN THE PROCESSES OF . . . PHYSICAL REVIEW D 85, 053008 (2012)

053008-5

Direction of     defines true polar ( 𝜃true ) and 

azimuthal ( 𝝓true )angles for the recoil proton. 

cos(✓true) = cos(✓0)cos(✓z)� sin(✓0)sin(✓z)cos(�)

cos(�true)sin(✓true) = cos(✓z)sin(✓
0)cos(�) + sin(✓z)cos(✓

0)

sin(�true)sin(✓true) = sin(✓0)sin(�)

~qz

E
prot

= M � t

2M

Proton energy is fixed by the squared four 
momentum transfer t. 

Photon energy is calculated using true energy 
transfer to the reaction.

E� = ⌫true +
t

2M
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Precision of calculations

Aram Movsisyan, DPWG meeting 15.11.2018

Radiative cross section is an integral over the phase-space of the photon in s & p peaks.

Accuracy of the calculation can be controlled by an external parameter (iKeyGen), that 
defines also the probabilities of second photon radiation.

Energy distributions of generated photons in the 
s & p peaks. 
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Generation of MC Sample
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Event sample is generated using weighted MC method. 

    Flat phase-space X=(Q2 ,  xBj. ,  -t , 𝜙) + MC weight   

    MC weight = (σBorn(X) + σRad.(X)) * phase-space  

    RC factor = (σBorn(X) + σRad.(X)) / σBorn(X)

Distribution of event weights 
for e16 kinematics

Distribution of RC factor 
for e16 geometry
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Inclusive kinematics
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Comparison of the shapes of kinematic distributions for samples with and without radiated 
photon. Distributions are normalized to the area.  
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Kinematics of electron and proton
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Comparison of the shapes of kinematic distributions for samples with and without radiated 
photon. Distributions are normalized to the area.  
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Exclusive kinematics
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Comparison of the shapes of Mx2 & 𝜙 distributions for samples with and without radiated 
photon. Distributions are normalized to the area.  
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Conclusion & Outlook
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Monte Carlo generator with radiative effects for BH process can be used in the ongoing 
DVCS analysis.

Performance can be improved and controlled by the analyzers.

Possibility to add polarization dependences.

Possibility to add DVCS contribution together with Interference terms (for different GPD 
models).

The source codes are available both in ForTran and C.

Thank you!
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Backup
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Backup
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