Probing 2N-SRC via (e,e'N) reactions off ^{3,4}He and ¹²C

Using E2a data

Peninah Levine Nov. 15, 2018

CLAS NPWG Meeting

SRC in n. Rich systems

SRC in n. Rich systems

Relevant observables in 'SRC' kinematics

Benchmark in 'SRC Kinematics':

¹²C / ⁴He (e,e'p) ¹²C / ⁴He (e,e'n)

¹²C (e,e'p) / (e,e'n) ⁴He (e,e'p) / (e,e'n)

Relevant observables in 'SRC' kinematics

Benchmark in 'SRC Kinematics':

 $^{12}C / ^{4}He (e,e'p)$ Should equal $a_2(^{12}C/^{4}He)$ $^{12}C / ^{4}He (e,e'n)$ Should equal each other

Relevant observables:

Benchmark in 'SRC Kinematics':

¹²C / ⁴He (e,e'p) ¹²C / ⁴He (e,e'n)

¹²C (e,e'p) / (e,e'n) ⁴He (e,e'p) / (e,e'n) Physics: ³He / ⁴He (e,e'p) ³He / ⁴He (e,e'n)

³He(e,e'p) / ³He(e,e'n)

TODAY:

Benchmark in 'SRC Kinematics':

¹²C / ⁴He (e,e'p) ¹²C / ⁴He (e,e'n)

¹²C (e,e'p) / (e,e'n) ⁴He (e,e'p) / (e,e'n) Physics: ³He / ⁴He (e,e'p) ³He / ⁴He (e,e'n)

³He(e,e'p) / ³He(e,e'n)

¹²C / ⁴He (e,e'p) ³He / ⁴He (e,e'p)

Nucleus		
e^- fiducial cuts		
$x_B > 1.2$		
$\theta_{pq} < 25^{\circ}$		
$\frac{p}{q} > 0.62$		
$\frac{p}{q} < 0.96$		
$P_{miss} > 0.3$		
$P_{miss} < 1$		
Proton fiducial cuts		
$(^{12}C) v_z > 4 cm$		
$(^{12}C) v_z < 7 cm$		
(He) $v_z > -2.5 \ cm$		
(He) $v_z < -0.5 \ cm$		

(e,e'p): Event Selection

Fiducial + Z-Vertex cuts.

Note: same cut on 3He and 4He target to match acceptances.

Nucleus		
e^- fiducial cuts		
$x_B > 1.2$		
$\theta_{pq} < 25^{\circ}$		
$\frac{p}{q} > 0.62$		
$\frac{p}{q} < 0.96$		
$P_{miss} > 0.3$		
$P_{miss} < 1$		
Proton fiducial cuts		
(¹² C) $v_z > 4 \ cm$		
(¹² C) $v_z < 7 \ cm$		
(He) $v_z > -2.5 \ cm$		
(He) $v_z < -0.5 \ cm$		

(e,e'p): Event Selection

'Standard SRC selection cuts'. [Hen PLB, Hen Science, Cohen PRL, Duer Nature ...]

Kinematical distributions studied and will be included in the report.

Nucleus	³ He	⁴ He	¹² C
e^- fiducial cuts	3151792	4905277	4308325
$x_B > 1.2$	16593	28831	25640
$\theta_{pq} < 25^{\circ}$	16593	28831	25640
$\frac{p}{q} > 0.62$	11511	17469	13850
$\frac{p}{q} < 0.96$	10526	16849	13474
$P_{miss} > 0.3$	4426	8617	7000
$P_{miss} < 1$	4407	8581	6942
Proton fiducial cuts	4143	8122	6655
(¹² C) $v_z > 4 \ cm$			5602
(¹² C) $v_z < 7 \ cm$			5600
(He) $v_z > -2.5 \ cm$	3023	7179	
(He) $v_z < -0.5 \ cm$	1962	2969	

Good (e,e'p) Statistics

 $A(e,e'p)\cdot w/L/Z/T$ $4He(e,e'p)\cdot w_{4He}/L_{4He}/Z_{He}/T_{He}$

$$\frac{A(e,e'p)}{4He(e,e'p)} \cdot w_{4He}/L_{4He}/Z_{He}/T_{He}$$

• Number of measured events

$$\frac{A(e,e'p)}{W} \cdot \frac{W}{L/Z/T} = \frac{4He(e,e'p)}{W} \cdot \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} = \frac{1}{2} \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} = \frac{1}{2} \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} = \frac{1}{2} \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} = \frac{1}{2} \frac{W_{4He}}{W_{4He}} \cdot \frac{W_{4He}}{W_{4He}} \cdot$$

- Number of measured events
- 1 / Simulated_Efficiency Only for 12C/4He; From map; Applied even-by-event

+ remove events where either 4 He or A map efficiency < 80%.

$$\frac{A(e,e'p) \cdot w/L/Z/T}{4He(e,e'p) \cdot w_{4He}/L_{4He}/Z_{He}/T_{He}}$$

- Number of measured events
- 1 / Simulated_Efficiency Only for 12C/4He; From map; Applied even-by-event
- Integrated luminosity

$$\frac{A(e,e'p)\cdot w/L/Z/T}{4He(e,e'p)\cdot w_{4He}/L_{4He}/Z_{He}/T_{He}}$$

- Number of measured events
- 1 / Simulated_Efficiency Only for 12C/4He; From map; Applied even-by-event
- Integrated luminosity
- Number of protons in the nucleus

$$\frac{A(e,e'p)\cdot w/L/Z/T}{4He(e,e'p)\cdot w_{4He}/L_{4He}/Z_{He}/T_{He}}$$

- Number of measured events
- 1 / Simulated_Efficiency Only for 12C/4He; From map; Applied even-by-event
- Integrated luminosity
- Number of protons in the nucleus
- Nuclear Transparency (⁴He: 0.75; ¹²C: 0.53)

Proton Ratio

Proton Ratio

Relevant observables:

¹²C, ⁴He: (e,e'p) / (e,e'n)

Neutrons: Detection efficacy & momentum reco. Resolution [Follow Duer Nature 2018; Details in the report]

Acceptance Matching: _____ p-fiducials on neutrons; n-fiducials on protons.

Protons before and after 10cm EC cut

Acceptance Matching: _____ p-fiducials on neutrons; n-fiducials on protons.

Smearing protons to simulate neutron resolution

x_B cut on neutrons and smeared protons

Leading nucleon cuts: θ_{pq} and p/q

Leading nucleon cuts: θ_{pq} and p/q

$\theta_{nq} < 25^{\circ}$	
$0.62 < P_N/q < 1.1$	

Summary of smeared proton and neutron cuts

$$\begin{split} x_{\rm B} > 1.1 \\ 0^{\rm o} < \theta_{\rm pq} < 25^{\rm o} \\ 0.62 < \theta_{\rm pq} < 1.10 \\ 0.402 < P_{\rm miss} < 1.000 \ {\rm GeV/c} \\ M_{\rm miss} < 1.175 \ {\rm GeV/c^2} \end{split}$$

Checking selected cuts using E_{miss} distributions

Checking selected cuts using e⁻ kinematic variables

Checking selected cuts using e⁻ kinematic variables

Checking selected cuts using p and n kinematic variables

Checking selected cuts using p and n kinematic variables

Raw counts of (e,e'p) and (e,e'n) events

Nucleus	#(e,e'p) [Statistical Uncertainty]	#(e,e'n) [Statistical Uncertainty]	Statistical Uncertainty (#(e,e'p)/Z)/(#(e,e'n)/N)
³ He	377 [5.2%]	62 [12.7%]	13.7%
⁴ He	948 [3.2%]	230 [6.6%]	7.3%
¹² C	709 [3.8%]	171 [7.6%]	8.5%

Weighting the raw counts by detection efficiency

A(e,e'p)/A(e,e'n) ratios

Nucleus	(#(e,e'p)/Z/sigma _{ep}) / (#(e,e'n)/N/sigma _{en})
⁴ He	1.05 ± 0.2
¹² C	1.00 ± 0.2

Cut sensitivity

Cut	Sensitivity Range	Change in p/n ratio
$x_{\rm B} > 1.1$	± 0.05	5.2%
$0^{\circ} < \theta_{pq} < 25^{\circ}$	$\pm 5^{\circ}$	0.1%
0.62 < p/q < 1.1	± 0.05	
$0.402 < P_{miss} < 1 \text{ GeV/c}$	$\pm 0.025 \text{ GeV/c}$	4.9%
$M_{\rm miss}$ < 1.175 GeV/c ²	$\pm 0.025 \text{ GeV/c}^2$	10.6%
Total Uncertainty		16.32%

What's next

• A/4He (e,e'n)

• Systematics

(Double check acceptance maps, fiducials etc.)

Back Up Slides

³He/⁴He (e,e'p) and (e,e'n) ratios - raw p, n counts

Nucleus	n-relevant p [Statistical Uncertainty]	all p [Statistical Uncertainty]
³ He	377 [5.2%]	5781 [1.3%]
⁴ He	948 [3.2%]	16804 [0.8%]
¹² C	709 [3.8%]	11928 [0.9%]

Defining false positives, negatives to optimize M_{miss}, P_{miss} cuts

False Positives

Smearing causes non-SRC events to pass the cuts.

False Negatives

Smearing causes SRC events to fail the cuts.

P_{miss} and M_{miss} cuts using false positives, negatives

P_{miss} and M_{miss} cuts using false positives, negatives

 $0.402 < P_{miss} < 1.000 \text{ GeV/c}$ $M_{miss} < 1.175 \text{ GeV/c}^2$ (adopted from Meytal's report)