EG2: (e, e'pp)/(e, e'p)and new SRC event generator CLAS Nuclear Physics Working Group Meeting

Axel Schmidt

MIT

November 15, 2018

The short-distance *NN* interaction is poorly known.

Scalar part of the NN interaction

The short-distance *NN* interaction is poorly known.

Scalar part of the NN interaction

Short-range correlated pairs prefer to be *np* because of the tensor force.

How does np-dominance evolve with momentum?

How does np-dominance evolve with momentum?

Missing Momentum is a proxy for the pre-collision momentum.

pp/p analysis using EG2 data

Select A(e, e'p) events in which the p comes from an SRC pair.
Exact same procedure (exact same EVENTS!) as in:

- O. Hen et al., "Probing pp-SRC in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb using the A(e, e'p) and A(e, e'pp) Reactions" (2014)
- E. O. Cohen et al., "Extracting the center-of-mass momentum distribution of pp-SRC pairs in ¹²C, ²⁷AI, ⁵⁶Fe, and ²⁰⁸Pb" (2018)

pp/p analysis using EG2 data

Select A(e, e'p) events in which the p comes from an SRC pair.
Exact same procedure (exact same EVENTS!) as in:

- O. Hen et al., "Probing pp-SRC in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb using the A(e, e'p) and A(e, e'pp) Reactions" (2014)
- E. O. Cohen et al., "Extracting the center-of-mass momentum distribution of *pp*-SRC pairs in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb" (2018)

2 See how often there is an additional proton in coincidence.

A(e, e'p) Event selection

0.3 < p_{miss} < 1.0 GeV/c
x_B > 1.2

A(e, e'p) Event selection

A(e, e'p) Event selection

How many recoil protons go undetected?

We built a simple model for the pair center-of-mass motion.

 \vec{p}_{CM} is described by a three-dimensional Gaussian.

Longitudinal to p_{miss} :

Transverse to p_{miss} :

- Width: $\sigma_{\parallel} = \mathbf{a}_1(p_{\text{miss}} 0.6 \text{ GeV}) + \mathbf{a}_2$ Width: σ_{\perp}
- Mean: $\mu_{\parallel} = \mathbf{b}_1(p_{\text{miss}} 0.6 \text{ GeV}) + \mathbf{b}_2$ Mean: $\mu_{\perp} = 0$

We built a simple model for the pair center-of-mass motion.

 \vec{p}_{CM} is described by a three-dimensional Gaussian.

Longitudinal to p_{miss} :

Transverse to p_{miss} :

- Width: $\sigma_{\parallel} = \mathbf{a}_1(p_{\text{miss}} 0.6 \text{ GeV}) + \mathbf{a}_2$ • Mean: $\mu_{\parallel} = \mathbf{b}_1(p_{\text{miss}} - 0.6 \text{ GeV}) + \mathbf{b}_2$ • Mean: $\mu_{\perp} = 0$
 - $\begin{array}{c} 0.28\\ 0.26\\ 0.26\\ 0.26\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\$

I used a Markov Chain MC to estimate the parameters, and the recoil acceptance.

This method yields a similar estimate for σ_{CM} .

Each MC step predicts an acceptance factor.

I can apply a correction to the data.

I can apply a correction to the data.

What does the generator say?

- Simulating Carbon
- Contact values from Weiss et al. PLB (2018)
- Need to require $p_{rel} > 250$ MeV for numerical stability

What does the generator say?

What does the generator say?

We can ask the question the other way around.

Physics \leftarrow Data

```
We can ask the question the other way around.
```

```
■ Physics → Data
```

Does the generator explain the data we see?

- Single-charge exchange and transparency
- Detector acceptance (using map)
- Event selection cuts

The generator can explain the pp/p ratio we measure.

Comparison of recoil acceptance

Comparison of recoil acceptance

Our model for $\vec{p}_{CM} \parallel \vec{p}_{miss}$

Our model for $\vec{p}_{CM} \parallel \vec{p}_{miss}$

The generator can explain the pp/p ratio we measure.

Summary

- **1** The p_{miss} evolution of pp/p probes the limits of tensor dominance.
- 2 Markov-Chain MC can infer how many protons were missed.
- **3** Alternately: the new SRC Generator can make contact with the data directly.