E2a: PID, Calibration, and Map Analysis Note CLAS Nuclear Physics Working Group Meeting

Axel Schmidt

MIT

November 15, 2018

p*p* pairs are universally rare.

M. Duer et al., **Nature** 560, p. 617 (2018)

pp pairs are universally rare. *np* dominance in asym. nuclei

E. O. Cohen et al., **PRL** 121, 092501 (2018)

- *pp* pairs are universally rare.
- *np* dominance in asym. nuclei
- Center of mass motion of pairs

B. Schmookler et al., under peer review (2018)

- *pp* pairs are universally rare.
- *np* dominance in asym. nuclei
- Center of mass motion of pairs
- Connection to the EMC effect

All of these results have come from EG2.

Beam energy: 5.014 GeV

Targets: *d*, C, Al, Fe, Pb

All of these results have come from EG2.

Beam energy: 5.014 GeV

Targets: *d*, C, Al, Fe, Pb

Limitations

- 1 One beam energy
- 2 No light nuclei
- $3 Size \leftrightarrow Asymmetry$

E2a offers new possibilities.

E2a offers new possibilities.

Multiple beam energies

Great for electrons-for-neutrinos

■ ³He, ⁴He targets

In range of ab initio calculations

■ ³He is extremely asymmetric

Overlap with EG2

Cross checks with C, Fe

In my talk today:

- 1 Calibrations
- 2 Acceptance Maps
- **3** Applications and Future Work

E2a Calibrations

Curating the work by W. Ingram, S. McLauchlan, R. Niyazov, D. Protopopescu et al.

- Particle ID
- Momentum Corrections
- Vertex Corrections
- Fiducial Cuts

Described in Mariana Khachatryan's analysis note

PID: E/p for electrons Δt vs. p for hadrons

PID: E/p for electrons Δt vs. p for hadrons

PID: E/p for electrons Δt vs. p for hadrons

PID: E/p for electrons Δt vs. p for hadrons

e^- mom. corrections determined from simulation

Vertex corrections are needed to correct for off-axis beam.

Before vertex corrections

Vertex corrections are needed to correct for off-axis beam.

After vertex corrections

Fiducial cuts: remove acceptance edges

Fiducial cuts: remove acceptance edges

20

In my talk today:

1 Calibrations

2 Acceptance Maps

3 Applications and Future Work

Detector acceptance by "Map"

22

Detector acceptance by "Map"

Detector acceptance by "Map"

Two 3D histograms in p, $\cos \theta$, ϕ space

- Simulated events generated per bin
- Simulated events accepted per bin
- Acceptance $\equiv N_{acc.}/N_{gen.}$
- User can propagate errors if desired

Maps have advantages.

- Simulation is pre-computed
- Maps are simple and fast to query
- Prevents risk of users running CLAS simulations 'wrong'

In my talk today:

- 1 Calibrations
- 2 Acceptance Maps
- **3** Applications and Future Work

Maps allow data/sim. comparisons.

e4*v*: work by A. Papadopoulou, M. Khachatryan, A. Ashkenazi

Maps allow corrections for different target positions.

Maps allow comparing proton and neutron acceptances.

Maps allow comparing proton and neutron acceptances.

Maps allow estimating how many recoil protons escape detection.

EG2 carbon data

Conclusions

1 New E2a data mining program

2 Produced E2a acceptance maps

3 Additional chapter in E2a technical note