Preparations for RG-H: Electrons on Transversely Polarized Hydrogen-Deuteride (HD)

Kevin Wei

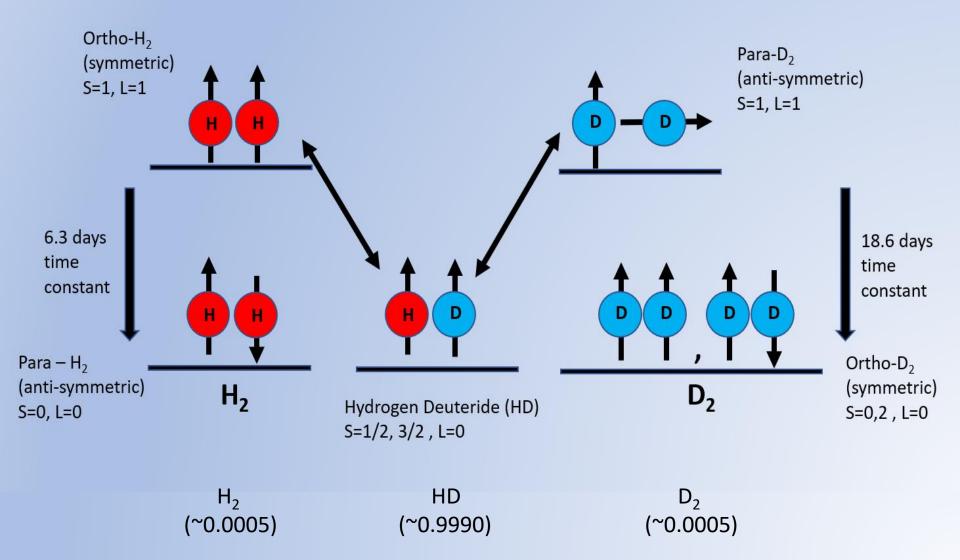
University of Connecticut

November 14, 2018

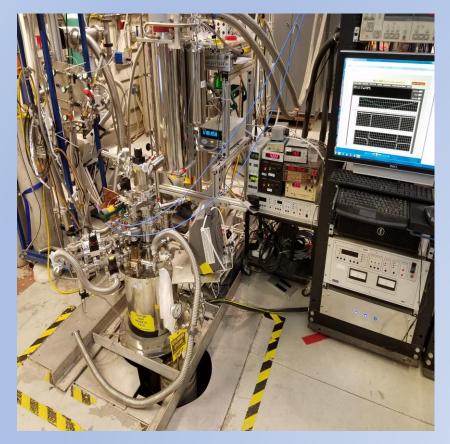
CLAS Collaboration

Collaborators

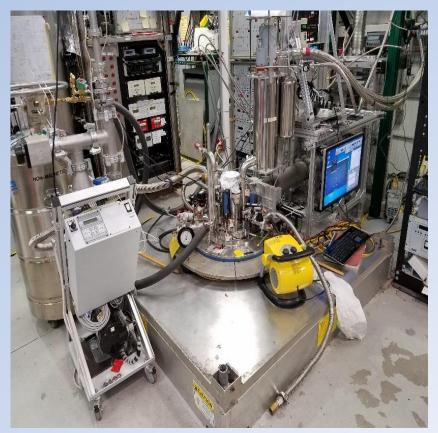
- Jefferson Lab (HDice Physics Division)
 - G. Dezern, C. Hanretty, T. Kageya, M. Lowry, A. M. Sandorfi, X. Wei
- Jefferson Lab (UITF Accelerator Division)
 - J. Grames, M. Poelker
- University of Connecticut
 - K. Joo , T. O'Connell, K. Wei
- Universita di Roma Tor Vergata and INFN-Sezione di Roma 2 (Gas analysis)
 - A. D'Angelo
- INFN-Senzione di Ferrara, 44122 Ferrara, Italy
 - L.Barion, M. Contalbrigo, M. Statera


Motivation

- High-rated experiments approved for Hall B with CLAS12. Each has the main goal of studying the spin and flavor dependence of transverse space and momentum distributions of quarks inside the nucleon.
 - Transverse spin effects in SIDIS at 11 GeV with a <u>transversely polarized target</u> using the CLAS12 Detector
 - Contact: Marco Contalbrigo (<u>mcontalb@fe.infn.it</u>)
 - https://www.jlab.org/exp_prog/proposals/12/PR12-12-010.pdf
 - Measurement of transversity with dihadron production in SIDIS with <u>transversely</u> <u>polarized target</u>
 - Contact: Harut Avakian (<u>Avakian@jlab.org</u>)
 - https://www.jlab.org/exp_prog/proposals/12/PR12-12-009.pdf
 - Deeply Virtual Compton Scattering at 11 GeV with <u>transversely polarized target</u> using the CLAS12 Detector
 - Contact: Latifa Elouadrhiri (<u>Latifa@jlab.org</u>)
 - https://www.jlab.org/exp_prog/proposals/12/PR12-12-010.pdf


HDice Target

- Transverse polarization requires transverse magnetic fields to hold the target spin.
 - **Problem**: this can bend the beam into the detectors.
 - Solution: mitigate the problem by limiting the beam bending into the detectors (smaller B•dl)
 - Can we use a transversely polarized HD target?
- An HDice target is a frozen spin target of hydrogen-deuteride (HD)
 - HDice target can be sustained by a low, transverse holding field (NIM A737 (2014) 107)


HDice Target – Polarization Process

HDice Target- Production

Production Dewar (PD) – a cryostat used for HD crystal formation and polarimetry with a temperature of 4.2 K (capable of as low as ~2 K) and a magnetic field up to 2 T.

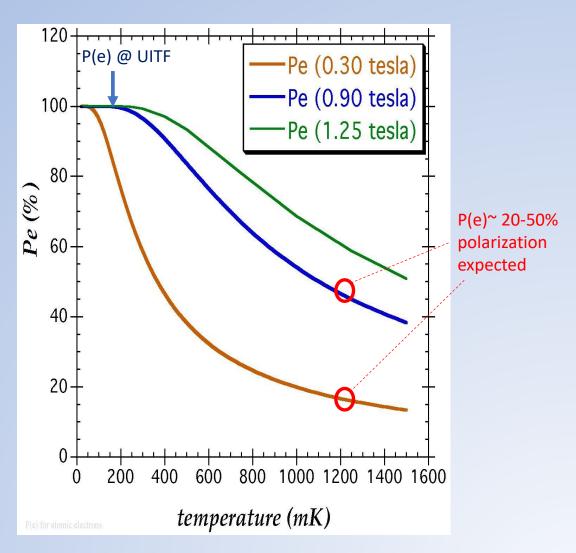
Dilution Refrigerator (DF) – a cryostat used to polarize targets with a temperature of 10 mK and a magnetic field of 15 T.

HDice Target - Production

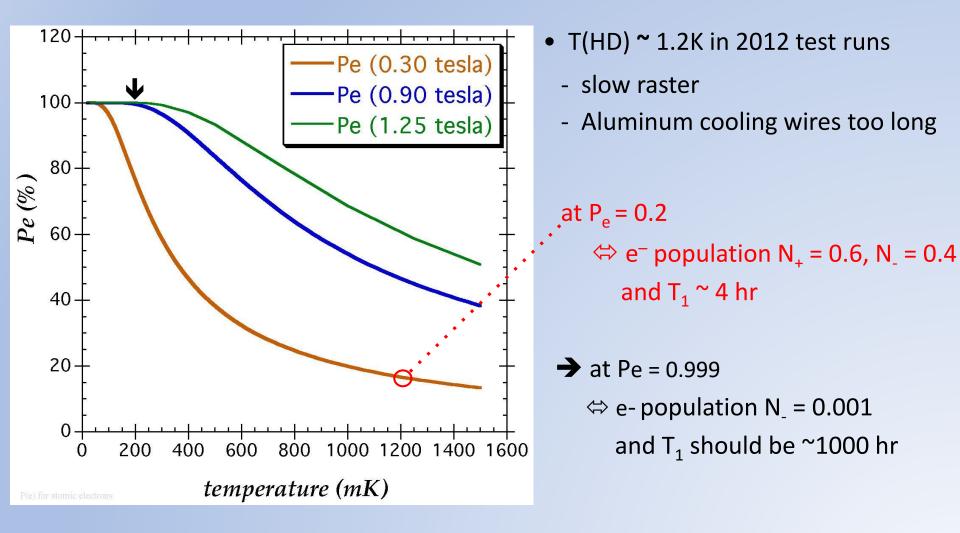
Transfer Cryostat (TC) – a cryostat used to transfer targets between cryostats with a temperature of 2K and a magnetic field of 0.1 T.

In-Beam Cryostat (IBC) – a cryostat used to operate the target under a particle beam with a temperature range of 50 mK to 300 mK, a longitudinal magnetic field up to 0.9 T, and a transverse magnetic field up to 0.07 T

2012 e+HD Tests (during the g14 experiment)

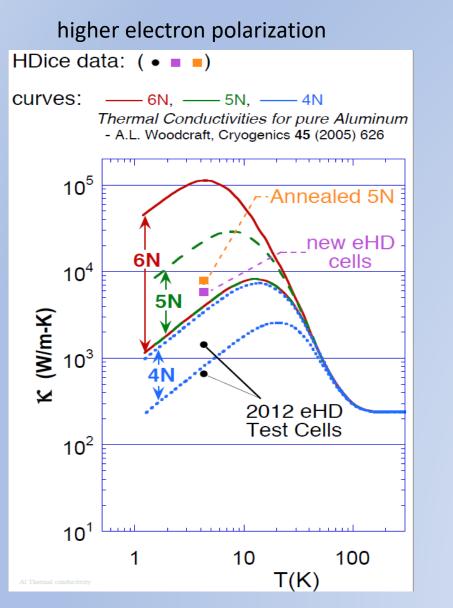

- Successful photon experiments during the g14 (2012) run. (PRL 118 (2017) 242002)
- Runs were conducted to study the effect of an electron beam on the HDice target
- Results shows a significant loss of polarization due to the electron beam (after 1 nA-day)
- Identified three potential mechanisms of depolarization needing further testing:
 - Beam heating: available raster too slow <> target temp high <> molecular electrons unpaired by Moller scattering were not fully polarized <> spin flip of unpaired electrons generate fields that depolarize HD
 - 2012 tests were run with H spin parallel to the holding field; magnetic moment of unpaired electrons were opposite to H

spins can be diluted by hyperfine mixing


Set of chemical reactions that can lead to the build up of ortho (L=1)-H₂, which can cause a loss of the frozen-spin state

Depolarization Mechanisms 1

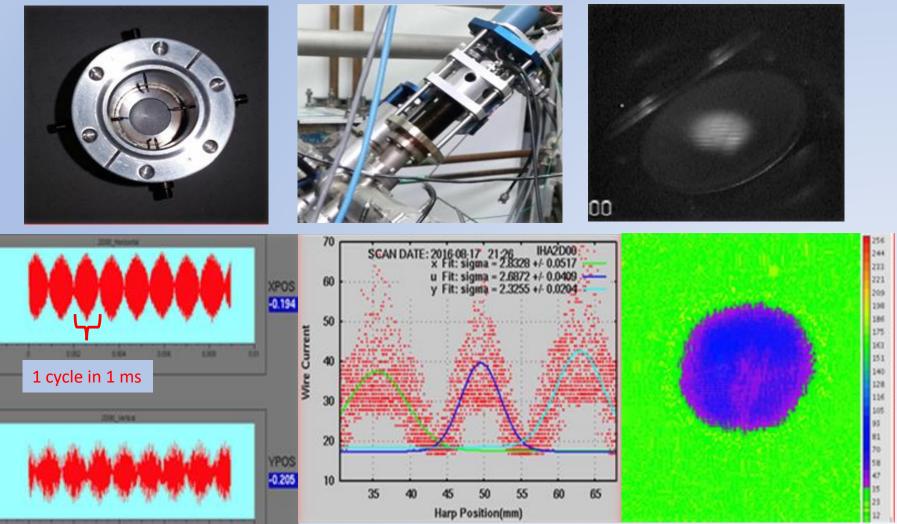
- Electron beam unpairs electrons of HD
 - If unpaired electrons are only partially polarized, they flip generating varying field
 possessing a component at the nuclear Larmor frequencies of H
 and D, which depolarizes the
 target material
 - Depends on temperature, which peaked at 1.2K during electron beam runs in 2012



Flipping, unpaired electron during 2012 eHD test

Depolarization Mechanism 1 - Solution

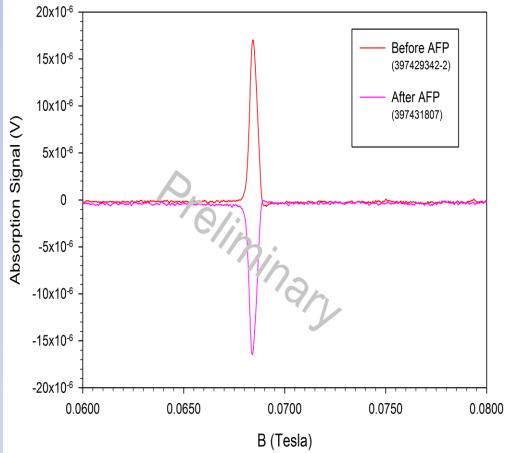
• Solution: Limit this effect by better controlling the temperature and having


New 20 KHz spiral raster (1 KHz refresh rate) Tests at 6 MeV in CEBAF injector

BPM

See (sec)

HARP

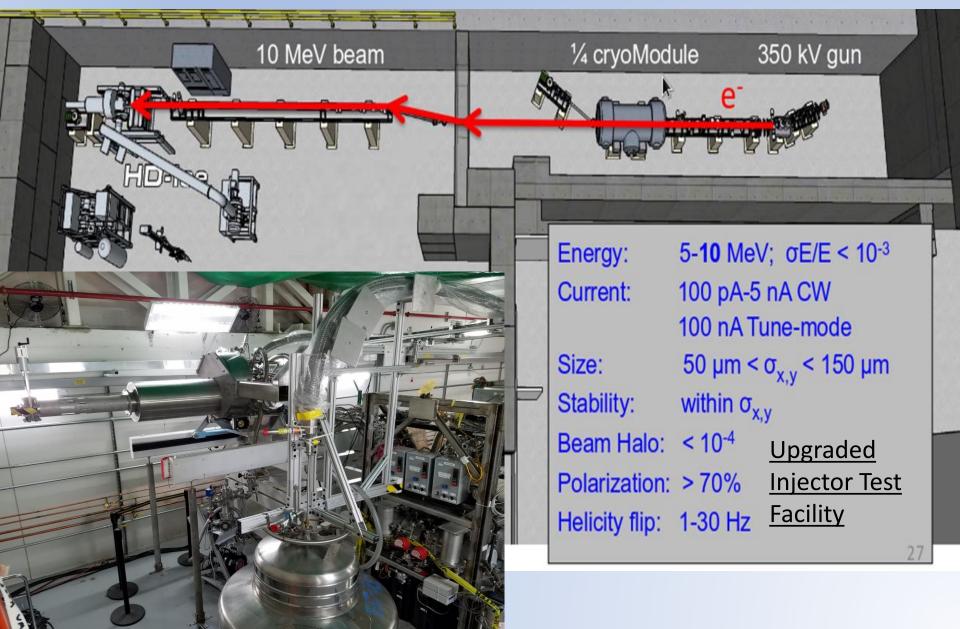

Viewer

Depolarization Mechanism 2

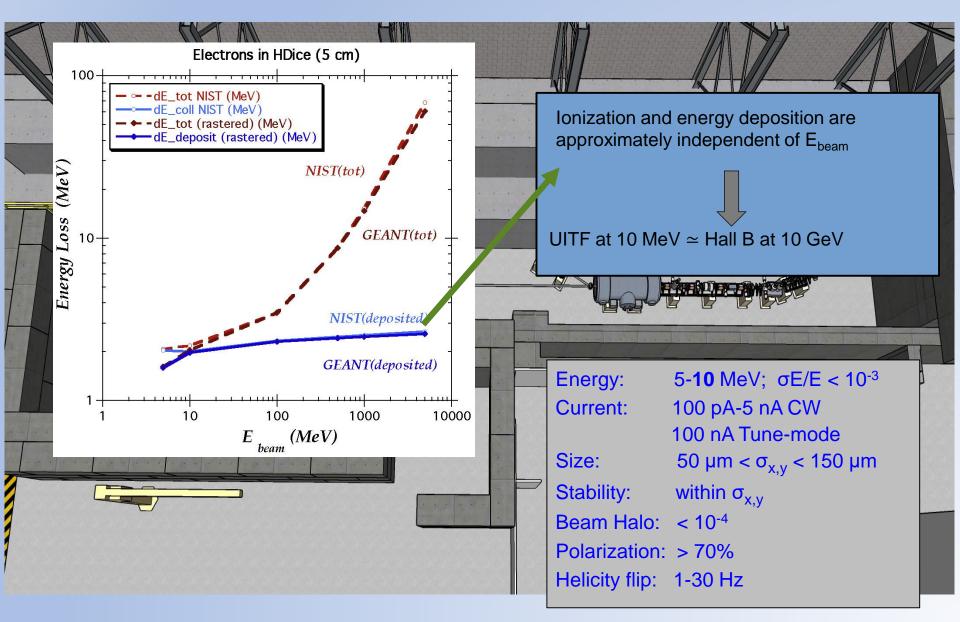
- Hyperfine mixing of unpaired electrons with H (or D)
 - 2012 tests were run with spin of H parallel to holding field.
 - Electrons polarized by holding field possess magnetic moments opposite to H
 - Hyperfine mixing dilutes H polarization
- Solution: Use RF via AFP to align H opposite to holding field
 - Magnetic moments of electrons will be parallel to H
 - Unique state with NO hyperfine mixing

Flipping H polarization with RF at 2.9117MHz P = +25dBm, dB/dt = 3.3×10^{-6} Tesla/s

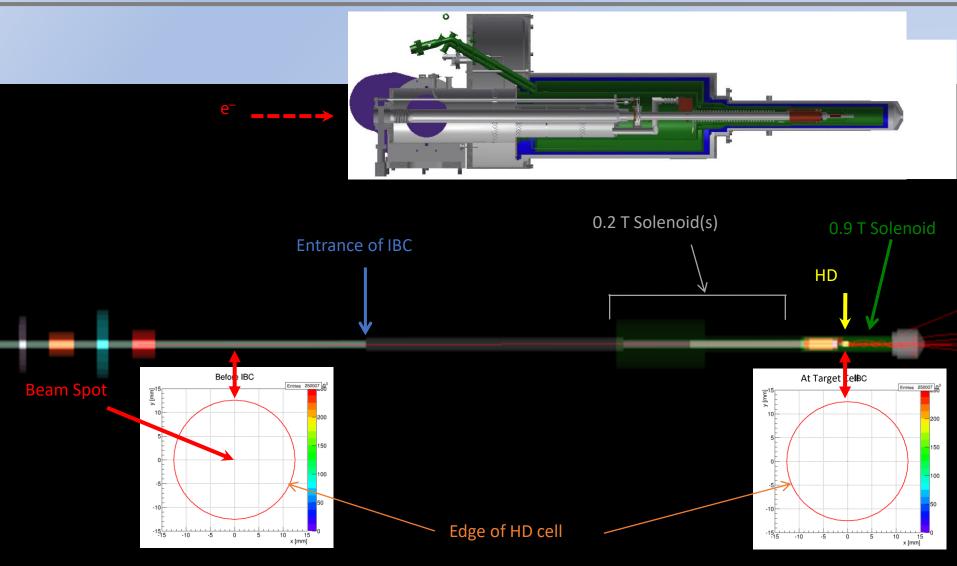
Depolarization Mechanism 3

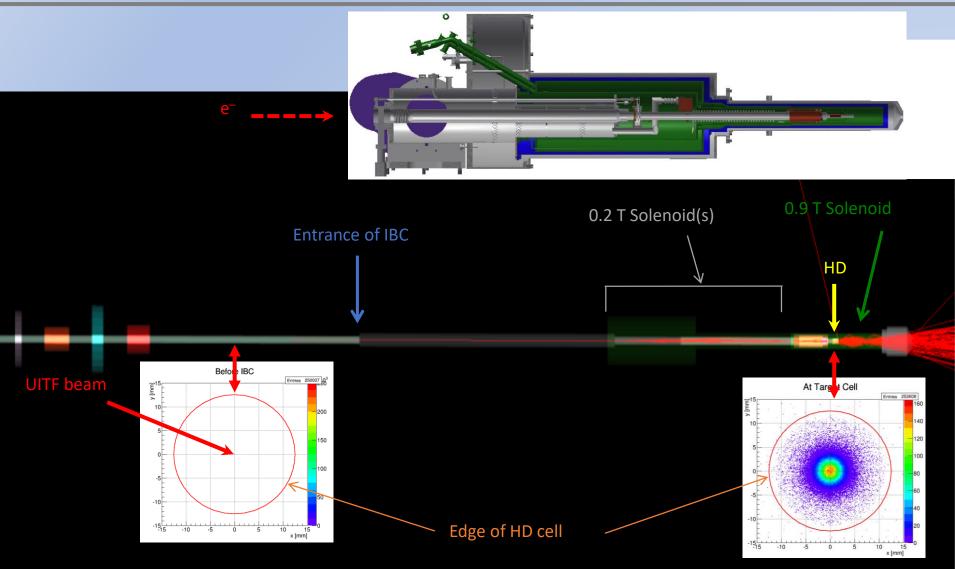

- Beam-induced chemical composition changes
 - HD molecule become ionized and highly reactive (as HD⁺)
 - Potential reactions:

 $HD^+ + HD \rightarrow H_2D^+ + D \ (mobile)$

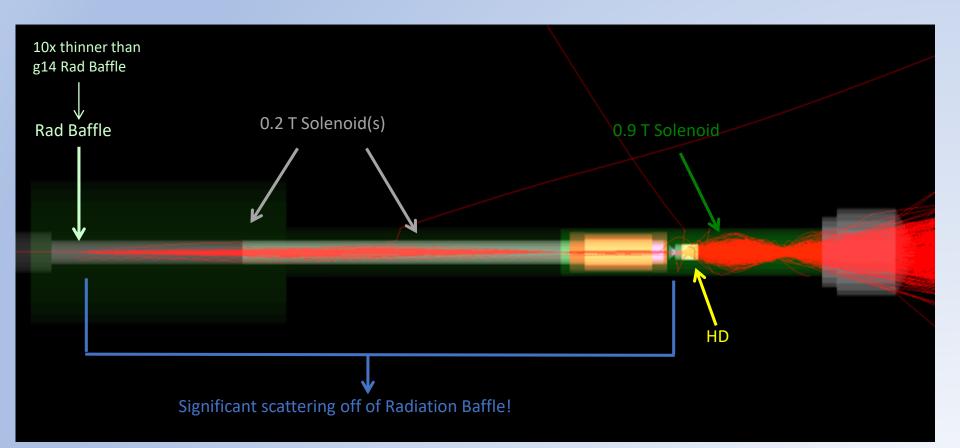

 $H_2D^+ + e^- \rightarrow H_2 + D$ (can form H_2 in 1st rotational state)

- Buildup of ortho-H₂ can shorten the polarization relaxation time (T1) of the target material
- HD gas was analyzed with Raman scattering (in Rome) after 2012 eHD tests.
- Found no significant increases in H₂, or D₂, but measurement limitations need to be studied with further beam tests

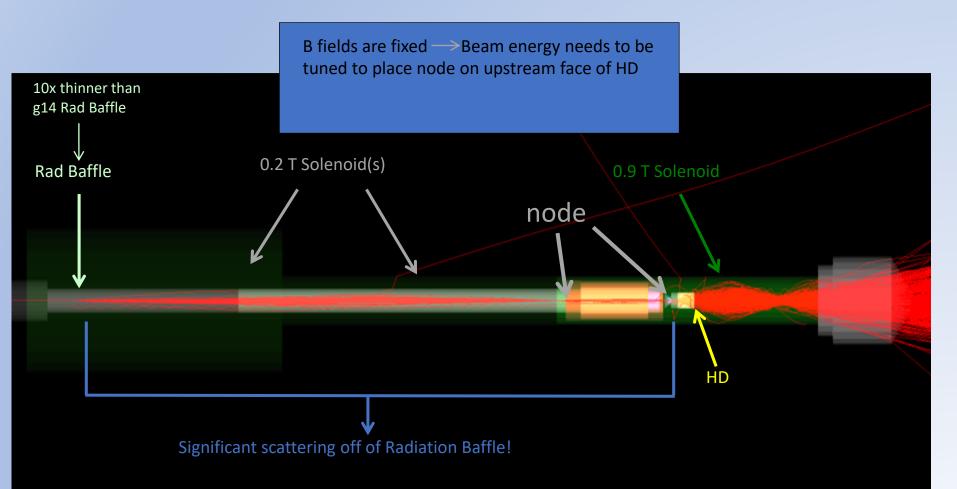

eHD Tests in UITF – 1st beams in 2019


eHD Tests in UITF

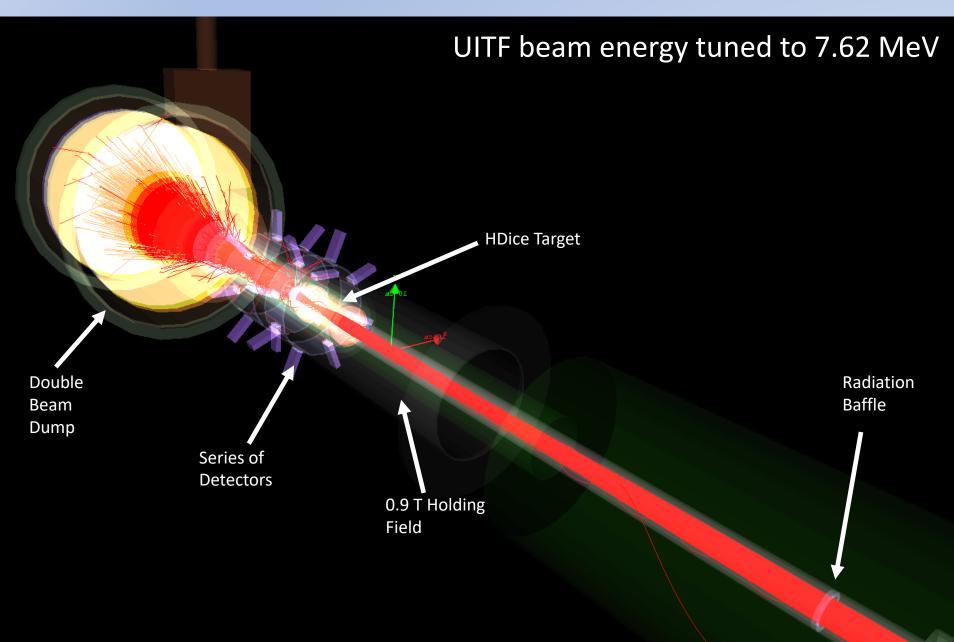
Pencil beam into IBC with normal orientation at 10 GeV



Pencil beam into IBC with normal orientation at <10 MeV


Pencil beam into IBC with normal orientation at <10 MeV

..... a closer view



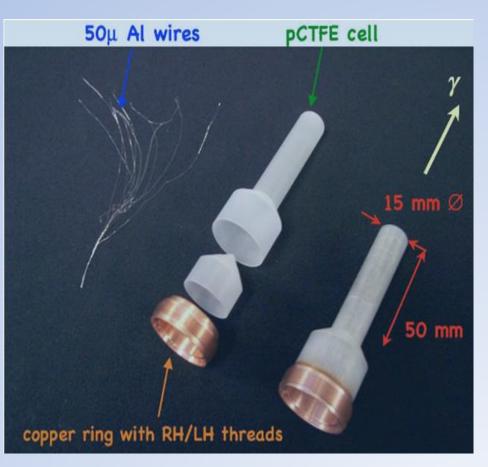
Pencil beam into IBC with normal orientation at <10 MeV

..... a closer view

Simulated Beam through IBC in UITF

eHD Testing Schedule

			2019												2020				
	Activity Name		2018			2019												2020	
		October	November	December	January	February	March	April	May	June	July	August	September	October	November	December	January	February	
1	HDice@UITF schedule																		
2	(updated: Oct 25/18)		HD	IBC	insta	lled in	cave	e-2 🗌											
3	IBC Installation in cave-2		_	+		+													
	fabricate brass aperture target ring for day-1 test option		_									<u> </u>							
13					IBC/	/Buffe	r dev	var co	old te	st in c	cave-	-2							
14	IBC cold test at UITF			*															
23	l I																		
					1	/4CM	conc	litioni	ind w	ith ne		vetro	ne –						
24 29	RF power test in 1/4CM						CONC				W IXI	ystio							
	Installation of Halo Counters & diagnostics																		
34																			
	1st UITF beam through warm IBC							1st 8	3 Mel	/ bea	m th	rough	n warr	n IBC) Ras	ster s	etun		
	Milestone: MeV beam through warm IBC							1000		, sea	ini un	lougi	- wan		,		otap		
	~																		
45	l I																		
	l										1st	bear	n thro	ugh d	cold II	BC w	rith		
46	2nd beam period: beam to cold IBC												I HD -	-				s	
75	Milestone: 8 MeV beam on unpolarized HD								_		19010				unicu	ang c			
76	l																		
	3rd beam period: e + polarized H					1st b	beam	on p	olariz	ed H									
105	Milestone: 1st MeV beam on polarized H										-	\$							
106	l											Orrel	 		Later				
													polari						
	4th period: e + polarized H & D										_ 1	1st be	eam o	n pol	arized	d D		F	
132	Milestone: 1st beam on polarized D												-		-				
		October	Vember	December	January	February	March	April	May	June	July	August	September	October	November	December	January	February	
		Та																	

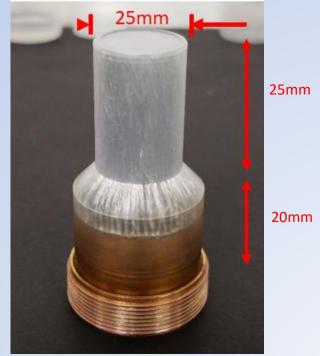

Today

END

Questions?

HDice Target Design – during g14 experiment

- An image of the HDice target cell used during the g14 test runs is shown to the right.
 - On the left is a bundle of 50 μm aluminum wires
 - 750 aluminum wires are separated into bundles and soldered into the copper ring base.
 - In the middle is a copper ring next to the lower and upper pCTFE (Kel-F) shells.
 - On the right is an assembled target cell used for the g14 experimental runs at Jlab.

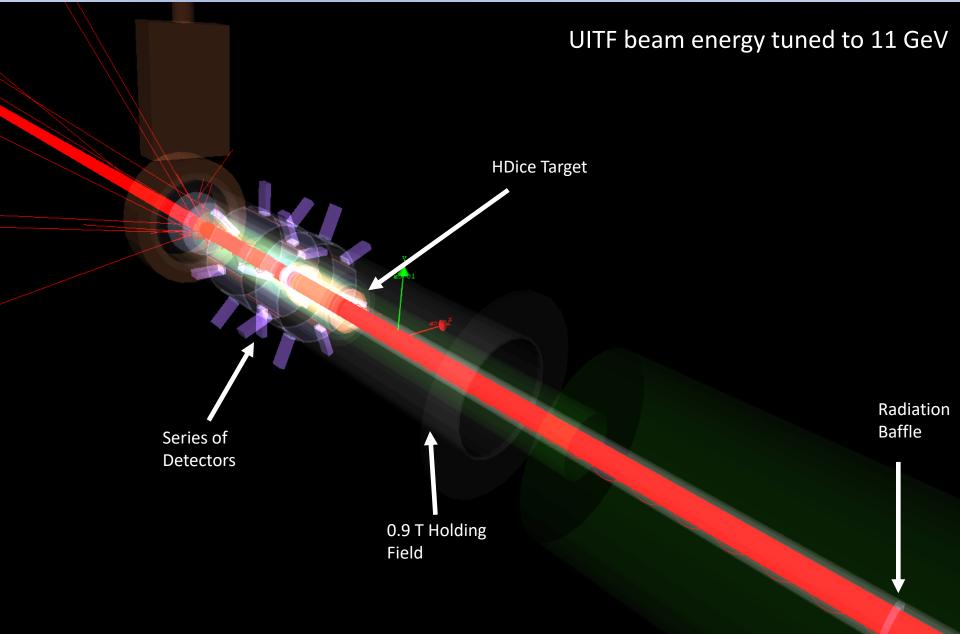


Depolarization Mechanism 1 - Solution

- Solution: Limit this effect by better controlling the temperature and having higher electron polarization
 - Faster Raster to limit temperature rises, redesign target shorter Al wires, higher purity Al, smaller HD cell

In the image on the left is the copper ring with 60 holes that is used as the copper base. In the middle is a single wire bundle of 24 wires. On the right is the outer kel-f shell (top) and the inner kel-f shell (bottom)

The image above shows a completed target cell ready for HD target production.


Polarization Measurement via NMR

3009= 1868/ <u>ن</u> 18600-(5) 2900 2800 Field 18200 2699 18374-58 60 -10 50 52 54 56 58 60 -10 22 24 26 28 30 32 50 52 54 56 67 10 12 42 44 46 48 18 20 34 48 2 14 16 20 22 24 28 30 32 34 36 38 40 6 Time Time 2.000E-6-2.000E-6 0.000E+0 0.000E+0 -2.000E-6 -2.000E-6 -4.000E-6 -4.000E-6--6.000E-6 × -6.000E-6 × -8.000E-6 -8.000E-6 -1.000E-5 -1.000E-5--1.200E-5 -1.400E-5 -1.200E-5 -1.600E-5 -1.400E-5 -10 32 34 20 26 28 30 -10 10 12 14 6 8 16 22 24 28 30 32 34 36 42 50 52 18 20 26 38 40 44 AF 48 Time Time 1.500E-5-6.000E-6-1.000E-5-4.000E-6-2.000E-6 5.000E-6 0.000E+0-> 0.000E+0 ≻ -2.000E-6--5.000E-6 -4.000E-6--1.000E-5 -6.000E-6 -1.500E-5 -10 2 4 6 8 10 12 14 16 40 42 44 46 48 50 52 54 56 58 60 62 -8.000E-6 18 20 22 24 26 28 30 32 34 36 38 -10 2 6 8 10 12 14 16 18 20 22 24 34 42 44 48 50 52 54 56 58 60 62 4 26 28 40 46

Deterium NMR signal

Hydrogen NMR signal

Simulated Beam through IBC in UITF

