

Whitney R. Armstrong Argonne National Laboratory

November 14, 2018

Outline

① Overview and Motivation for ALERT

- ALERT Detector Status
- ❸ RG-L Plans

W.R. Armstrong

The ALERT Experiments

A comprehensive program to study nuclear effects

Coherent Processes on ⁴He

- 4 He($e, e' {}^{4}$ He γ)
- 4 He($e, e' {}^{4}$ He ϕ)

Explores the partonic structure of ${}^{4}\mathrm{He}$

W.R. Armstrong

The ALERT Experiments

A comprehensive program to study nuclear effects

Coherent Processes on ${}^{4}\mathrm{He}$

- 4 He($e, e' {}^{4}$ He γ)
- 4 He($e, e' {}^{4}$ He ϕ)

Explores the partonic structure of ${}^{4}\mathrm{He}$

DIS on ${}^{4}\mathrm{He}$ and ${}^{2}\mathrm{H}$: Tagged EMC Effect

- 4 He $(e, e'+{}^{3}$ H)X (proton DIS)
- ⁴He(*e*, *e*'+³He)X (neutron DIS)
- ${}^{2}H(e, e' + p)X$ (neutron DIS)

Test FSI and rescaling models

W.R. Armstrong

The ALERT Experiments

A comprehensive program to study nuclear effects

Coherent Processes on ${}^{4}\mathrm{He}$

- 4 He($e, e' {}^{4}$ He γ)
- 4 He($e, e' {}^{4}$ He ϕ)

Explores the partonic structure of ${}^{4}\mathrm{He}$

DIS on ${}^{4}\text{He}$ and ${}^{2}\text{H}$: Tagged EMC Effect

- ⁴He(*e*, *e*'+³H)X (proton DIS)
- 4 He(e, e'+ 3 He)X (neutron DIS)
- ${}^{2}H(e, e' + p)X$ (neutron DIS)

Test FSI and rescaling models

Incoherent processes on ${}^{4}\text{He}$ and ${}^{2}\text{H}$

- 4 He($e, e'\gamma p + {}^{3}$ H)
- 4 He $(e, e'\gamma + {}^{3}$ He)n
- ${}^{2}\mathsf{H}(e,e'\gamma+p)n$

Identify medium modified nucleons

Anthenergy more channels for free W.R. Armstrong

Why is the ALERT detector needed?

Existing and proposed detectors (RTPCs) do not meet experimental needs for ALERT run-group

- RTPC is rate limited; constantly being readout \rightarrow no trigger capabilities
- BONuS cannot provide PID

- Designed to operate in CLAS12 5 T field
- Runs at CLAS12 luminosity limit and Hall-B beam current limit
- PID of ions from protons to ⁴He
- Independent trigger (can be adjusted to operate with higher luminosities).

W.R. Armstrong

Hall-B Setup: CLAS12 + ALERT

- Use CLAS12 to detect scattered electron, $e^\prime,$ and forward scattered hadrons.
- A low energy recoil tracker (ALERT) will detect the spectator recoil or coherently scattered nucleus

ALERT requirements

- Identify light ions: H, ²H, ³H, ³He, and ⁴He
- Detect the **lowest momentum** possible (close to beamline)
- Handle high rates
- Provide independent trigger
- Survive high radiation environment
 → high luminosity

ALERT Design and Simulations

Particle Identification

- dE/dx cannot be improved (it fixed by nature)
- TOF separation can always be improved!
- Scintillator topology (thin inner layer ٠ vs. thick outer layer) also helps

W.R. Armstrong

November 14, 2018

250

5 / 18

ALERT Design and Simulations

Particle Identification

- TOF provides most PID
- 2 H and 4 He degenerate in TOF.
- Separated by dE/dx at low p/q
- Scintillator topology at high $p/q \rightarrow \alpha s$ don't make it through first layer.

W.R. Armstrong

ALERT Run Group Planning Meeting held on November 12, 2018

- Engineering from Argonne, Orsay, and JLab present
- ALERT Conceptual design is complete.
- Identified a number of new items to be addressed (ALERT cart assembly)
- Final designs choices are being worked out

ALERT Drift Chamber Design

Basic Design

- Detector will surround a ${\sim}3$ atm gas target cell which is 6 mm in radius and constructed with 25 $\mu{\rm m}$ kapton walls
- Hyperbolic drift chamber with 10° stereo angle.
- Outer scintillator hodoscope for PID

Drift Chamber Design

- 2 mm wire separation
- 10° stereo angle
- Minimize material (windows/walls)
- Detects $\theta \sim 30^{\circ}$ to 170°

W.R. Armstrong

Ongoing work led by IPN Orsay

Modular design has a flexing problem and becomes less modular in order to be more rigid.

W.R. Armstrong

Ongoing work led by IPN Orsay

Modular design has a flexing problem and becomes less modular in order to be more rigid.

W.R. Armstrong

Ongoing work led by IPN Orsay

Modular design has a flexing problem and becomes less modular in order to be more rigid.

W.R. Armstrong

Ongoing work led by IPN Orsay

Modular design has a flexing problem and becomes less modular in order to be more rigid.

W.R. Armstrong

ALERT Drift Chamber 2.0

G Charles and L Bettane

- New design consisting of one set of wires
- No dead region due to mechanical constraints.
- Wire pin testing looks promising (and familiar).

W.R. Armstrong

November 14, 2018

10 / 18

ALERT Target M. Hattawy

- Target will be similar to BONuS12 target
- Need to simulate beamline (more on this later)
- Will investigate new designs for better flushing of residual gasses when changing targets

ALERT Trigger and DAQ integration

- "CLAS12 Trigger Integration" Benjamin Raydo (JLab)
- Calculations of minimum ionizing particle signals (G. Charles)
- For Nuclear GPD proposal and running at few $> 10^{35}$ will require increasing the threshold to only trigger on alphas.

W.R. Armstrong

ALERT Drift Chamber Rates

- Need to keep occupancies low (few percent) for efficient reconstruction.
- Rough $p-^4$ He (trigger level) separation via DC signal threshold \rightarrow raise thresh to lower p trigger rate
- Occupancy is conservative upper limit (more on this in a moment)

Sevent of U.S. Department of Energy laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, Li

W.R. Armstrong

ALERT TOF System

Scintillator detector

Scintillator Detectors

- > 700 SiPMs to readout
- Current mode pre-amps → best time resolution (shooting for 50 ps, simulating 150 ps)
- Two options
 - Petiroc2 ASIC 32 channel charge and time readout ASIC for SiPMs.
 External digitizers.
- The ASIC solution looks most promising but needs to be tested.
- Prototype with Petiroc demo board being developed at Argonne
- Mechanical structure and assembly engineering in progress.

W.R. Armstrong

ALERT and CLAS12 Computing

Laboratory Computing Resource Center

Bebop (2017)

- 1024 public nodes
- 128GB DDR4 (Intel Broadwell) / 96GB DDR4,16GB MCDRAM (Intel Knights Landing) of memory on each node
- 36 cores (Intel Broadwell) / 64 cores (Intel Knights Landing) per compute node
- Omni-Path Fabric Interconnect

LCRC project approved for FY19

- 4 TB storage and 15000 core hours in first quarter now.
- Nodes purchased for one-time cost (then maintained and integrated by LCRC ⁽²⁾)
- Storage and compute nodes will be exclusive to project (Tape storage also available)
- Bebop has same architecture as ALCF's Theta (and likely Aurora)
- ALERT Run Group will do initial testing by running ALERT beamline simulations.

Lay the computing ground work for CLAS collaboration to use exascale computing in near future

See Sylvester Joosten's Talk : Opportunities for tier-2 computing at Argonne

ALERT Run Group

A Comprehensive Program to Study Nuclear Effects

ALERT is a bridge from JLab 12 GeV physics to the Electron Ion Collider

W.R. Armstrong

Run-Group L Future Plans

- Near term goals include finalizing design parameters.
- Optimize final target parameters: window thicknesses, pressures, downstream beamline
- Begin engineering on ALERT cart and support tube.
- ERR by May 2019.

Thank You!

W.R. Armstrong

Backup

W.R. Armstrong

