
Measurement of quark transverse polarization at CLAS
via p0 and h exclusive electroproduction   

(A. Lung – High impact physics)



Jlab unpolarized p and h experiments measures combinations of
generalized form factors GFF 
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               HT  and ET   -  quark helicity flip 

HT   nucleon helicity flip        ET   nucleon helicity non-flip
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JLab p0 and h are sensitive to      and ET HT
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Figure 5: Results for the π+ (left) and π0 (right) cross sections. The solid
(dashed, dash-dotted) lines represent the unseparated (longitudinal, trans-
verse) cross sections. The π+ data are taken from [5]. (Color online)

tudinal and transverse components (dσ = dσT + εdσL) for π+ production
are shown in Fig. 5 at Q2 = 3.44 GeV2 and W = 3.83 GeV. For the ratio
of the longitudinal and transverse photon fluxes, ε, a value of 0.8 is taken.
Evidently, the agreement with the HERMES data [5] is very good. The lon-
gitudinal cross section is dominant at low −t′ but if −t′ becomes larger than
about 0.2 GeV2 the transverse cross section takes the lead. A crossing of
the two cross sections is also seen in the large-skewness Jefferson Lab data
measured by the Fπ collaboration [13] although it occurs at a smaller value
of −t′. Actually the crossing takes place at about the same value of t for
our results and the Fπ data. It is to be stressed that the dominance of the
longitudinal cross section at small −t′ is a consequence of the strong pion
pole. Without it one would have dσT > dσL at all t′. The pure pole contri-
bution to the longitudinal cross section behaves as −t/(t−m2

π)
2 at small −t.

This factor has a pronounced maximum at t = −m2
π. For ξ ≥ mπ/(2m) the

maximum lies outside the scattering region. Hence, the longitudinal cross
section decreases continuously. On the other hand, for ξ < mπ/(2m) the
above factor generates a maximum of dσL/dt at a small value of −t′. The
maximum is visible in the cross section if Q2 <∼ (mπ/m)W 2.

Before we turn to the discussion of π0 production it is in order to com-
ment on the pion wave functions which are needed in the calculation of the
subprocess amplitudes (cf. (7)). In fact we use the same wave functions as
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Figure 10: Results for the η (left) and η′ (right) cross sections. For notations
refer to Fig. 5. (Color online)

For the charge-conjugation-even mesons the GPDs contribute in the valence-
quark combination F a

i − F ā
i . For strange quarks we assume F s

i ≃ F s̄
i for all

GPDs 7. Hence, there is no contribution from strange quarks and one arrives
at the relation F (1)

i =
√
2F (8)

i .
The η and η′ cross sections are shown in Fig. 10. In order to facilitate

comparison of the cross sections for the various mesons we use the same
kinematical setting, W = 3.83 GeV and Q2 = 3.44 GeV2, for which there
are π+ data from HERMES [5]. For an understanding of the differences
between the η and π0 cross sections it is important to realize that the u and
d-quark GPDs contribute with opposite signs in these two reactions (see (39)
and (32)). For small −t′, the region where the GPDs H̃ and HT dominate,
the opposite sign of their u and d-quark parts leads to a larger contribution
to η than to π0 production which, in collaboration with the larger decay
constant (38), overcompensates the relative factor 1/

√
3 between (39) and

(32). Hence, the η/π0 ratio of the cross sections is of order 1, see Fig. 11. For
large −t′ the GPD ĒT dominates which has the same sign for u and d quarks.
Therefore, the η/π0 ratio is much smaller than 1; in fact close to 1/3 for a
large range of t′. Interestingly the CLAS collaboration [47] has measured
the η/π0 cross section ratio for −t reaching from 0.14 to 0.77 GeV2 but for

7For the unpolarized strange quark PDFs [53] and for Hs [54] possible differences
between strange and antistrange distributions have been studied. No evidence for a non-
zero difference has been found within errors.
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Decoupling generalized form factors (GFF) 
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Density of 
transversely polarized quarks 

in
unpolarized nucleon

(M. Diehl and Ph. Hagler hep-ph/0504175) 



GPDs vs impact parameter
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            K x,t( )= k(x) e f (x)t    
 (K=GPD,    f (x) = profile function,   k(x) = normalization)



Density of transversely polarized quarks vs. impact parameter.
(M. Diehl and Ph. Hagler hep-ph/0504175) 
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Density of transversely polarized quarks in unpolarized nucleon. (S i = 0)

si =  quark spin   S i =  nucleon spin



GPDs vs impact parameter
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(GPDs contributing to transverse polarization density for unpolarized nucleon)



Density of transversely polarized quarks in unpolarized nucleon. (S i = 0)
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Density of quarks polarized in x direction: 



Deconvolute p0 and h to get contributions from quark flavors. 

p0 and h are members of the same meson multiplet. 

Extracting GPDs for individual quark flavors.

Constituent quark relationships
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Density of transversely polarized quarks in unpolarized nucleon.
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Density of quarks polarized in x-y plane: 

siε ijb j → bx x̂ − byŷ 
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Extracting GFFs for individual quark flavors.
Assume constituent quark relationships

(See VK)
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PS fit

Q2=1.8
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               Recalculate number density q(ET )

down quarks:       qd ∝  
b

Ad fd (x)
 e
− b2

4Ad
2 fd (x)

        bd =
 b qd (b)db∫
qd (b)db∫

 

up quarks:            qu ∝  
b

Au fn(x)
 e
− b2

4Au2 fu (x)           bu =
 b qu(b)db∫
qu(b)db∫

 

Ad    and   Au   adjusted so that  Ad / Au  =  2  
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p0 and h meson  production is a unique tool for  
obtaining distributions of transversely polarized 
quarks in a nucleon.

They are a significant component of the JLab program, 
along with the suite of exclusive reactions, such as DVMP, 

and  fmeson production, to map the quark/gluon 
distributions in terms of the GPD formalism,  in the 
nucleon.

Conclusion:


