Measurement of polarization observables for Λ hyperon.

Shankar Adhikari

Florida International University

15 November 2018

Shankar Adhikari Measurement of polarization observables for A hyperon.

Outline

1 Introduction

Missing Baryon Problem

2 Experiment and Data Analysis

- Experiment
- Data Analysis
- Measurement method

3 Results and Summary

- Results comparison
- Systematic uncertainty
- Summary

Missing Baryon Problem

Outline

1 Introduction

• Missing Baryon Problem

2 Experiment and Data Analysis

- Experiment
- Data Analysis
- Measurement method
- 3 Results and Summary
 - Results comparison
 - Systematic uncertainty
 - Summary

Missing Baryon Problem

Missing Baryon Problem

Missing Baryon Problem

Missing Baryon Problem and $K^+\Lambda$ channel

From an experimental point-of-view;

 Pion beams was the primary tool to study resonances. It is predicted that the high-mass resonances predominantly couple to γ beams.

Missing Baryon Problem

Missing Baryon Problem and $K^+\Lambda$ channel

From an experimental point-of-view;

- Pion beams was the primary tool to study resonances. It is predicted that the high-mass resonances predominantly couple to γ beams.
- Not all resonances couple strongly to the Nπ channel; coupled to other channels as well.
- Interference of states: Resonances are broad and overlapping, possible interference between N and Δ states.

						S	tatus as	s seen	in					
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	Νσ	$N\eta$	ΛK	ΣK	Νρ	$N\omega$	$N\eta \prime$	>	
N	$1/2^{+}$	****				-		_						
N(1440)	1/2+	****	****	****	****	***								
N(1520)	3/2-	****	****	****	****	**	****							
N(1535)	1/2-	****	****	****	***		****							
N(1650)	1/2-	****	****	****	***	*	****	*						
N(1675)	$5/2^{-}$	****	****	****	****	***		*	*					
N(1680)	$5/2^{+}$	****	****	****	****	***	*	*	*					
N(1700)	$3/2^{-}$	***	**	***	***	*	*							
N(1710)	1/2+	****		****			***	**						
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*			
N(1860)	$5/2^{+}$	**		**										
N(1875)	3/2-	***	**	**	*	**	*	*	*	*				
N(1880)	$1/2^+$	***	**		**	*	*	**	**		**			
N(1895)	$1/2^{-}$	****	****				****	**	**			****		
N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**		
N(1990)	$7/2^+$	**	**	**			*	*	*					
N(2000)	$5/2^{+}$	**	**		**	*	*							
N(2040)	$3/2^{+}$	*		*										
N(2060)	$5/2^{-}$	***	***	**	•						•			
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*				**		
N(2120)	3/2-	***	***	**	**	** 3	â ³⁰⁰ -			S_(1659)	D ₀ /1675	F ₁₀ (1680)		
N(2190)	$7/2^{-}$	****		****	****	**	ê E		(1232)			/ F_0	985)	• π* p -
N(2220)	9/2+	****	**	****			250		ΞL	P_(1620)	\rightarrow	D ₁ (1700)	P.(1910)	
N(2250)	9/2-	****	**	****			mE		1	8 0.990	\sim	/		• x p -
N(2300)	$1/2^+$	**		**			-		Δ.			P.,(1720)	F ₂₁ (1950)	
N(2570)	5/2-	**		**			150		11	D. (1930			17 .	1, (2230)
N(2600)	11/2	***		***			Ē						G ₁₁ (219)	G_(229)
N(2700)	$13/2^+$	**		**			100		11	P./3440				But
****	Existen	ce is certa	in.			_	E	1	4			41		
***	Existen	ce is very	likely.				50 -	1	Λ	1.10	جم	N	11	111
**	Evidence	ce of exist	ence is	fair.			Ē	. 1			ستبت			
*	Evidence	e of exist	ence is	poor.			0	1	1.2	1.4	1.6	1.8	2	2.2 2.4

Particle Data Group 2018.

Missing Baryon Problem

Missing Baryon Problem and $K^+\Lambda$ channel

From an experimental point-of-view;

- Pion beams was the primary tool to study resonances. It is predicted that the high-mass resonances predominantly couple to γ beams.
- Not all resonances couple strongly to the Nπ channel; coupled to other channels as well.
- Interference of states: Resonances are broad and overlapping, possible interference between N and Δ states.
- $\gamma p \rightarrow K^+ \Lambda$ channel is important that;

- only contribute to N^* with I = 1/2.

- $\Lambda
ightarrow p\pi^-$, self-analyzing nature of

Shankar Adhikari

 Λ hyperon allow us to measure

docay products

polarization observables from its

Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta t$
N	$1/2^{+}$	****						$\overline{\Lambda}$				
N(1440)	$1/2^{+}$	****	****	****	****	***		11				
N(1520)	$3/2^{-}$	****	****	****	****	**	****	1 1				
N(1535)	$1/2^{-}$	****	****	****	***		****	1 \				
N(1650)	$1/2^{-}$	****	****	****	***		****	(+ I				
N(1675)	$5/2^{-}$	****	****	****	****	***		•				
N(1680)	$5/2^{+}$	****	****	****	****	***		*				
N(1700)	$3/2^{-}$	***	**	***	***	*	*		I			
N(1710)	$1/2^{+}$	****	****					**	•			
N(1720)	$3/2^{+}$	****	****	****	***	*		****	*	*	*	
N(1860)	$5/2^{+}$	**		**					1			
N(1875)	$3/2^{-}$	***	**	**	*	**		*		*		
N(1880)	$1/2^{+}$	***	**		**	*		**	**		**	
N(1895)	$1/2^{-}$	****	****									****
N(1900)	$3/2^{+}$	****	****	**	**	*		**	**		*	**
N(1990)	$7/2^{+}$	**	**	**				*				
N(2000)	$5/2^{+}$	**	**		**				I 1			
N(2040)	$3/2^{+}$	*		*					I 1			
N(2060)	$5/2^{-}$	***		**					•			
N(2100)	$1/2^{+}$	***	**	***	**	**		*				**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	7/2-	****	****	****		**						
N(2220)	9/2+	****	**	****			*	\ *	*			
N(2250)	9/2-	****	**	****			*	1.1				
N(2300)	$1/2^{+}$	**		**				11				
N(2570)	5/2-	**		**				v				
N(2600)	11/2	***		***				•				
N(2700)	$13/2^+$	**		**								
****	Existen	ce is certa	in.									
***	Existen	ce is very	likely.									
**	Evidenc	ce of exist	ence is	fair.								
	NO. 4 1											

Status as seen in

... polarization observables are sensitive to the interefence from different states and

different processes

Measurement of polarization observables for Λ hyperon.

Missing Baryon Problem

Polarization observables

Photoproduction of pseudoscalar meson; 16 total measurement, at least 8 measurement requires.

$$\begin{split} d\sigma &= \frac{1}{2} \left(d\sigma_0 + \hat{\Sigma} [-P_L^{\gamma} \cos(2\phi_{\gamma})] + \hat{T} [P_y^T] + \hat{P} [P_y^T] \right. \\ &\quad + \hat{E} [-P_e^{\gamma} P_x^T] + \hat{G} [P_L^{\gamma} P_x^T \sin(2\phi_{\gamma})] + \hat{F} [P_{\gamma}^{\gamma} P_x^T] + \hat{H} [P_L^{\gamma} P_x^T \sin(2\phi_{\gamma})] \\ &\quad + \hat{C}_{x'} [P_e^{\gamma} P_x^R] + \hat{C}_{x'} [P_e^{\gamma} P_x^R] + \hat{O}_{x'} [P_L^{\gamma} P_x^R \sin(2\phi_{\gamma})] + \hat{O}_{x'} [P_L^{\gamma} P_x^R] \sin(2\phi_{\gamma}) \\ &\quad + \hat{L}_{x'} [P_x^T P_{x'}] + \hat{L}_{x'} [P_x^T P_x^T] + \hat{T}_{x'} [P_x^T P_{x'}^T] + \hat{T}_{x'} [P_x^T P_{x'}^T] \right). \end{split}$$

Polarized	Beam	Target	Hyperon
	unpol. linear circular	xy'z	x' y' z'
Unpolar.	σ		
Beam: linear circular	Σ	H G F E	$egin{array}{ccc} O_{x'} & O_{z'} \ C_{x'} & C_{z'} \end{array}$
Target: x z		Т	$\begin{array}{ccc} T_{x'} & T_{z'} \\ L_{x'} & L_{z'} \end{array}$
Hyperon:			Р

Missing Baryon Problem

Polarization observables

With C_x , C_z , and P

$$\begin{aligned} \frac{d\sigma}{d\Omega} &\equiv \sigma(\cos\theta_x, \cos\theta_y, \cos\theta_z) \\ &= \sigma_o\{1 + \alpha P^\gamma C_x \cos\theta_x \\ &+ \alpha P^\gamma C_z \cos\theta_z + \alpha P \cos\theta_y\} \end{aligned}$$

Polarized	Beam	Target	Hyperon
	unpol. linear circular	x y'z	x' y' z'
Unpolar.	σ		
Beam: linear circular	Σ	H G F E	C_x C_z
Target: x z		Т	$\begin{array}{ccc} T_{x'} & T_{z'} \\ L_{x'} & L_{z'} \end{array}$
Hyperon:			P

Polarization observables

With C_x , C_z , and P

$$\begin{aligned} \frac{d\sigma}{d\Omega} &\equiv \sigma(\cos\theta_x, \cos\theta_y, \cos\theta_z) \\ &= \sigma_o \{1 + \alpha P^\gamma C_x \cos\theta_x \\ &+ \alpha P^\gamma C_z \cos\theta_z + \alpha P \cos\theta_y \} \end{aligned}$$

Polarized	Beam	Target	Hyperon
	unpol. linear circular	x y'z	x'y'z'
Unpolar.	σ		
Beam: linear circular	Σ	H G F E	$\begin{array}{c} 0 \\ c_x \\ c_x \end{array}$
Target: x z		Т	$\begin{array}{c} T_{x'} & T_{z'} \\ L_{x'} & L_{z'} \end{array}$
Hyperon:			P

How to measure? $\gamma p \rightarrow K^+ \Lambda$

Shankar Adhikari Measurement of polarization observables for A hyperon.

Missing Baryon Problem

Establishing the N^* - $N(1900)3/2^+$

- Bump first seen in SAPHIR K⁺Λ cross section data but due to systematic, misinterpreted as J^p = 3/2⁻ for J^p = 3/2⁺
- Established in BnGa multichannel analysis using CLAS cross section and polarization results (C_x and C_z), $J^p = 3/2^+$ let to the *** in PDG2012, PDG2018 ****.

R. Bradford et al. [CLAS Collaboration], PRC 75, 035205 (2007)

• First baryon resonance observed and confirmed in electromagnetic meson production.

Missing Baryon Problem

What is significance?

- γp → K⁺Λ; resonant and non-resonant process. Significant background from non-resonant processes which are entangled with resonant processes. Crucial to understand non-resonant process.
- C_x and C_z: E_γ up to 5.45 Gev or W up to 3.33 GeV (previously 2.5 GeV)
- *P*: *W* up to 3.33 GeV (previously 2.8 GeV)

credit: T. Corthals

Experiment Data Analysis Measurement method

Outline

Introduction

• Missing Baryon Problem

2 Experiment and Data Analysis

- Experiment
- Data Analysis
- Measurement method

3 Results and Summary

- Results comparison
- Systematic uncertainty
- Summary

Experiment Data Analysis Measurement method

g12 Experiment using CLAS @ JLab

Hall B spectrometer

g12 experiment

 E_{γ} range: 1.142 – 5.45 GeV

Experiment Data Analysis Measurement method

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

• Topologies for $K^+ p\pi^$ three-track: $\gamma p \rightarrow K^+ p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)

• Standard cuts and corrections

g12 analysis note

- Timing cut
- Vertex cut
- Fiducial cut
- Time of Flight Knockout
- Multiple Photon Cut
- E-p corrections

$\gamma p \rightarrow K^+ \Lambda$, Λ decay mode

 $p\pi^- \rightarrow 64\% \ n\pi^\circ \rightarrow 36\%.$

Final state K^+ , proton, and π^- are

required in data.

Shankar Adhikari Measurement of polarization observables for Λ hyperon.

Experiment Data Analysis Measurement method

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+p\pi^$ three-track: $\gamma p \rightarrow K^+p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+p$ (missing π^-)
- Standard cuts and corrections

g12 analysis note

- Timing cut
- Vertex cut
- Fiducial cut
- Time of Flight Knockout
- Multiple Photon Cut
- E-p corrections
- After cuts and corrections

Example: vertex cut

Cut within the target length, z-vertex 40 cm + 5 cm downstream, radial r < 5 cm.

Experiment Data Analysis Measurement method

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+p\pi^$ three-track: $\gamma p \rightarrow K^+p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+p$ (missing π^-)
- Standard cuts and corrections
 - g12 analysis note
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout
 - Multiple Photon Cut
 - E-p corrections
- After cuts and corrections

two-track

three-track

Shankar Adhikari

Measurement of polarization observables for Λ hyperon.

Experiment Data Analysis Measurement method

Kinematic Fitting

two-track

 $\gamma p
ightarrow K^+ p(\pi^-);$ hypothesis CL > 5%

107 10⁶ 10⁵ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 confidence level Entries 1.02905e 140 120 100 80 600 40 20 MM(K⁺) (GeV)

three-track

 $\gamma p
ightarrow K^+ p \pi^-$; hypothesis CL > 1%

Shankar Adhikari

Measurement of polarization observables for Λ hyperon.

Experiment Data Analysis Measurement method

Event based dilution factor calculation for $\gamma p \rightarrow K^+ p(missing \pi^-)$

• Energy dependent $MM(K^+)$

Q-factor method (A multivariant analysis)
 For each event ("seed event"), find N nearest neighbors in kinematic phase space (e.g. cos θ^{cm}_{K+}, cos θ^{cm}_p, φ_p and W).
 Plot mass distribution of the N + 1 events and fit with signal plus background functions.

Experiment Data Analysis Measurement method

Event based dilution factor calculation for $\gamma p \rightarrow K^+ p(missing \pi^-)$

- Energy dependent $MM(K^+)$
- Q-factor method (A multivariant analysis)

For each event ("seed event"), find N nearest neighbors in kinematic phase space (e.g. $\cos \theta_{K^+}^{cm}$, $\cos \theta_p^{cm}$, ϕ_p and W). Plot mass distribution of the N + 1 events and fit with signal plus background functions.

 MM(K⁺): W= 3.2- 3.33 GeV, weighted by Q for signal and by (1- Q) for background total function (voigt + linear) signal function (voigt) background function (linear)

Figure : Seed event: *Q*-value fitting.

Experiment Data Analysis Measurement method

Event based dilution factor calculation for $\gamma p \rightarrow K^+ p(missing \pi^-)$

- Energy dependent $MM(K^+)$
- Q-factor method (A multivariant analysis)
 For each event ("seed event"),

find N nearest neighbors in kinematic phase space (e.g. $\cos \theta_{K^+}^{cm}$, $\cos \theta_p^{cm}$, ϕ_p and W). Plot mass distribution of the N + 1 events and fit with signal plus background functions.

 MM(K⁺): W= 3.2- 3.33 GeV, weighted by Q for signal and by (1- Q) for background $MM(K^+)$ $MM(K^+)*Q$ $MM(K^+)*(1-Q)$

Experiment Data Analysis Measurement method

Measurement method: Maximum Likelihood

$$\hat{z} = \hat{p}_{\gamma} \\ \hat{y} = \frac{\hat{p}_{\gamma} \times \hat{p}_{K}}{|\hat{p}_{\gamma} \times \hat{p}_{K}|} \\ \hat{x} = \hat{y} \times \hat{z}$$

• Maximum Likelihood Method; - Event by event based method

$$\mathcal{L} = \prod_{i=1}^{N} [\mathcal{P}_i]^{w_i}$$

$$C_{x}, C_{z}; w_{i} = Q_{i}, P_{\odot} \text{ photon beam polarization}$$

$$P: w_{i} = Q_{i} \times f_{acc}^{i}, \alpha \text{ weak decay asymmetry} = 0.642$$

$$P(\cos \theta_{x}^{p}, \cos \theta_{z}^{p} | C_{x}, C_{z})$$

$$= 1 \pm P_{\odot} \alpha (C_{x} \cos \theta_{x}^{p} + C_{z} \cos \theta_{z}^{p})$$

$$= 1 + \alpha P \cos \theta_{y}^{p}$$

$$= 1 + \alpha P \cos \theta_{y}^{p}$$

$$- \log \mathcal{L} = -\sum_{i=1}^{N} Q_{i} \log(1 \pm P_{\odot} \alpha (C_{x} \cos \theta_{x}^{p} + C_{z} \cos \theta_{z}^{p}))$$

$$- \log \mathcal{L} = -\sum_{i=1}^{N} Q_{i} f_{acc}^{i} \log(1 + \alpha P \cos \theta_{y}^{p})$$

$$= \log \mathcal{L} = -\sum_{i=1}^{N} Q_{i} f_{acc}^{i} \log(1 + \alpha P \cos \theta_{y}^{p})$$

$$= \log \mathcal{L} = -\sum_{i=1}^{N} Q_{i} f_{acc}^{i} \log(1 + \alpha P \cos \theta_{y}^{p})$$

Results comparison Systematic uncertainty Summary

Outline

Introduction

• Missing Baryon Problem

2 Experiment and Data Analysis

- Experiment
- Data Analysis
- Measurement method

8 Results and Summary

- Results comparison
- Systematic uncertainty
- Summary

Results comparison Systematic uncertainty Summary

Comparison: two-track and three-track topologies.

Figure : three-track; binning in W and $\cos \theta_{K^+}^{cm}$. W = 23, and $\cos \theta_{K^+}^{cm}$ = 10

Results comparison Systematic uncertainty Summary

- Two-track preferred rather than three-track:
 - more statistics, better precision.
 - increased data point with smaller bin size.
 - background corrected using *Q*-factor method.
 - consistency check, suggested acceptance correction for P results.

Results comparison Systematic uncertainty Summary

Binning two-track

Figure : two-track, binning in W and $\cos\theta^{cm}_{K^+}.~W=$ 41, and $\cos\theta^{cm}_{K^+}=$ 10

Results comparison Systematic uncertainty Summary

Comparing with Previous CLAS measurements

Shankar Adhikari Measurement of polarization observables for Λ hyperon.

Results comparison Systematic uncertainty Summary

Comparing with Previous CLAS measurements

Shankar Adhikari Measurement of polarization observables for Λ hyperon.

Results comparison Systematic uncertainty Summary

Comparing with Previous CLAS measurements

Shankar Adhikari Measurement of polarization observables for A hyperon.

Results comparison Systematic uncertainty Summary

Comparing with Theory Model

Results comparison Systematic uncertainty Summary

Comparing with Theory Model

Results comparison Systematic uncertainty Summary

Systematic Uncertainty

Point-to-Point

• Cut related systematic uncertainty – Calculated variation selection criteria such as $\Delta t < 1$ ns to $\Delta t < 0.9$ ns.

$$\delta_{sys} = \sqrt{\frac{\sum_{i} \left(\frac{\mathcal{O}_{nom}^{i} - \mathcal{O}_{alt}^{i}}{\delta \mathcal{O}_{nom}^{i}}\right)^{2}}{\sum_{i} \left(\frac{1}{\delta \mathcal{O}_{nom}^{i}}\right)^{2}}},$$

- Uncertainty related to background
 - use Q-value $\pm \delta Q$.
- Total systematic uncertainty: $\delta_{sys,tot} = \sqrt{\sum_{src} \delta_{sys,src}^2}$

Scale Type

- Photon beam polarization
- Weak decay asymmetry α

Shankar Adhikari Measurement of polarization observables for A hyperon.

Results comparison Systematic uncertainty Summary

Systematic Uncertainty

Point-to-point uncertainties					
Source	δP	δC_x	δC_z		
timing cut	0.00126	0.00475	0.00420		
vertex position cuts	0.0149	0.0126	0.00469		
fiducial cuts	0.0085	0.0085	0.00417		
confidence level cut	0.0109	0.0172	0.0236		
Q-value	3 - 7%	3 - 5%	3 - 7%		
Scale-type uncertainties					
P_{\odot}	-	0.05 <i>C</i> _x	0.05 <i>C_z</i>		
lpha	0.020 <i>P</i>	0.020 <i>C_x</i>	0.020 <i>C_z</i>		
Total	0.020 <i>P</i>	0.054 <i>C_x</i>	0.054 <i>C_z</i>		

Table : Systematic uncertainties for observables.

Results comparison Systematic uncertainty Summary

Summary

- Photoproduction of K⁺Λ is an important channel to investigate intermediate nuclear resonances.
- Polarization observables are important to disentangle overlapped states.
- Extended measurement for polarization observables- C_x, C_z, and P: More data has been added to the previous measurements.
 – more precise measurement and great agreement with earlier CLAS results.
- Important to constrain the non-resonant (*t*-channel) contribution.
- Data are suitable to study the higher mass resonances.
- Further comparison with the different models, and collaboration with the theory group.

Results comparison Systematic uncertainty Summary

Thank You!

Shankar Adhikari Measurement of polarization observables for Λ hyperon.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+ p\pi^$ three-track: $\gamma p \rightarrow K^+ p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)
- Standard cuts and corrections

 $\gamma p \rightarrow K^+ \Lambda$; Λ , decay mode; $p\pi^- 64\%$ $n\pi^\circ$ with 36%. Final state K^+ , proton, and π^- are required in data.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+ p\pi^$ three-track: $\gamma p \rightarrow K^+ p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)
- Standard cuts and corrections

• Timing cut

Missing mass of K^+ before cuts in $\gamma p \rightarrow K^+ p \pi^-$

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

...to select right photon at vertex. events are selected with ± 1 ns.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+ p\pi^$ three-track: $\gamma p \rightarrow K^+ p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)
- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut

Cut within the target length (40cm) + 5 cm downstream.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+ p\pi^$ three-track: $\gamma p \rightarrow K^+ p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)
- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout

Loose, Nominal, and Tight; applied nominal cut.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

• Topologies for $K^+ p \pi^-$

three-track: $\gamma p \rightarrow K^+ p \pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)

- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout
 - Multiple Photon Cut

Table 3.2: List of removed paddles.

Sector 1:	6, 35, 40, 41, 50, 56
Sector 2:	2, 8, 34, 35, 41, 44, 50, 54, 56
Sector 3:	11, 35, 40, 41, 56
Sector 4:	41, 48
Sector 5:	48
Sector 6:	1, 5, 33, 56

Time of flight scintillator paddle number removed within six sector.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+p\pi^$ three-track: $\gamma p \rightarrow K^+p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+p$ (missing π^-)
- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout
 - Multiple Photon Cut
 - E-p corrections

Only single photon events are selected.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

• Topologies for $K^+ p \pi^$ three-track: $\gamma p \rightarrow K^+ p \pi^-$ (no

missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)

- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout
 - Multiple Photon Cut
 - E-p corrections

• Kinematic fitting

g12 momentum, photon beam energy, and energy loss of particle tracks are corrected. Collected effect. Red: before correction, Blue: after correction.

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

- Topologies for $K^+p\pi^$ three-track: $\gamma p \rightarrow K^+p\pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+p$ (missing π^-)
- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout
 - Multiple Photon Cut
 - E-p corrections
- Kinematic fitting
- Final Events

three-track: C	L>1%	
107		
109		
105		
104		
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 confidence level		

Results comparison Systematic uncertainty Summary

$\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

• Topologies for $K^+ p \pi^-$

three-track: $\gamma p \rightarrow K^+ p \pi^-$ (no missing particle) two-track: $\gamma p \rightarrow K^+ p$ (missing π^-)

- Standard cuts and corrections
 - Timing cut
 - Vertex cut
 - Fiducial cut
 - Time of Flight Knockout
 - Multiple Photon Cut
 - E-p corrections
- Kinematic fitting
- Final Events

two-track : >10 M three-track : ≈ 0.75 M

Results comparison Systematic uncertainty Summary

 $R = \sqrt{(C_x^2 + C_z^2 + P^2)}.$

Results comparison Systematic uncertainty Summary

Final results with systematic uncertainty

Results comparison Systematic uncertainty Summary

Final results with systematic uncertainty

Results comparison Systematic uncertainty Summary

Final results with systematic uncertainty

Results comparison Systematic uncertainty Summary

Effect of kinematic fitting

Results comparison Systematic uncertainty Summary

g12 running parameter

Table 3.1: Running conditions for g12

Electron Beam Energy	5.714 GeV
Electron Beam Current	60-65 nA (production) & 24 nA(single-prong)
Electron Beam Polarization	Circular
Radiator Material/Density	Au / 646 μ g/cm ²
Radiator Thickness	$10^{-4}\chi_{0}$
Radius of Photon collimator	6.4 mm
Photon Beam Energy Range	1.142-5.425 GeV
Target Shell Material	Kapton
Target Length/Diameter	40 cm/4 cm
Target Material	ℓH_2
Target Position	-90 cm from CLAS center
Target Polarization	None
Torus Magnetic Current	$\frac{1}{2}B_{max} = 1930 \text{ A}$