

Application of Machine Learning to π_0 photoproduction from CLAS/g9a

Chan Kim

The George Washington University

Igor Strakovsky and William Briscoe

CLAS Collaboration Meeting (HSWG) November 15, 2018

Overview

1 Motivation

- 2 Target Selection
- 3 Hydrogen Contamination on Carbon Target
- 4 Next Steps

CLAS g9a/FROST Experiment

 \circ Polarization Observables → Helicty Amplitudes → Resonances (PWA) \circ Polarizable: Incoming photons, target & recoiling nucleons

 \circ g9a/FROST - Circularly polarized photons with $E_{\gamma}\approx 0.4-2.4$ GeV and longitudinally polarized proton target:

Helicity Asymmetry E

• Double polarization observable E is the helicity asymmetry of the cross section:

$$E = \frac{\sigma_{3/2} - \sigma_{1/2}}{\sigma_{3/2} + \sigma_{1/2}} \qquad \text{for } \frac{3}{2} \And \frac{1}{2} \text{ are total helicty states}$$

• $\frac{d\sigma}{d\Omega}$ of polarized beam & polarized target for E (theo. & exp.):

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \\ \frac{1}{2,\frac{3}{2}} = \frac{d\sigma_0}{d\Omega} (1 \mp (P_z P_\lambda)_{\frac{1}{2},\frac{3}{2}} E) \qquad \left(\frac{d\sigma}{d\Omega} \right)_{\frac{1}{2},\frac{3}{2}} = \frac{N_{\frac{1}{2},\frac{3}{2}}}{A \cdot F \cdot \rho \cdot \Delta x_i}$$

• E is measured via:

$$E = \begin{bmatrix} \frac{1}{D_f} \end{bmatrix} \begin{bmatrix} \frac{1}{P_z P_\lambda} \end{bmatrix} \begin{bmatrix} \frac{N_{\frac{3}{2}} - N_{\frac{1}{2}}}{N_{\frac{3}{2}} + N_{\frac{1}{2}}} \end{bmatrix}$$

 $D_{f} = \text{dilution factor}$ $P_{z} = \text{Polarization of target in } \hat{z}$ $P_{\lambda} = \text{Polarization of beam}$ $N_{\frac{3}{2},\frac{1}{2}} = \# \text{ of events}$

g9a/FROST Target setup

Side view of FROST target with beam entering from the right. (A) Primary head exchanger, (B) 1 K heat shield, (C) Holding coil, (D) 20 K heat shield, (E) Outer vacuum can, $\overline{(F)}$ Polyethylene target, (G) Carbon target, (H) Butanol target J arget insert, (K) Mixing chamber, (L) Microwave waveguide, and (M) Kapton cold seal.

Motivation

ML Objectives: Target Selection & Ice on Carbon

- Target Selection
 - Events with z-vertex \in [2, 5]cm, uncertain whether γ hit Butanol or Carbon

- Ice on Carbon
 - Carbon events (bound-nucleon) expected to have broader $m_{\pi_0}^2$ peak due to Fermi motion.
 - Sharp peak (free-nucleon) observed in the Carbon target region. Carbon events are scaled by ${\sim}10.$

Banks Used

- GPID pid, E, \vec{p} , β_c , β_m , m, and E_γ
- MVRT vertex positions
- o Only single tracked events with protons
- Removed events outside of target cup (r = 7.5mm) He-Bath outside
- \circ Removed events with $E_\gamma pprox 0$
- No Energy loss correction yet
- No fiducial cuts yet

Neural Network Model Setup

• Two fully-connected (dense) neural layers

- 1 Dense layer with 15 nodes 15 parameters:
 - E, β , β_{diff} , $\beta_m E_\gamma$, m, $m_{\pi_0}^2$, pid,|p|, p_x , p_y , p_z , x, y, and z.
 - Too many parameters + insufficient train data \rightarrow Too specific training \rightarrow Overfitting (fail)
- 2 Dense layer with 3 nodes one for each target
 - For each event, this layer returns an array of 3 probability scores (butanol, carbon, or polythene) that sum to 1

o Optimizer used: AdamOptimizer

• Loss function used - Sparse categorical cross entropy:

-
$$H_{y'}(y) = -\sum_{i} y'_{i} \log(y_{i})$$
 ,where y_{i} is the predicted target
and y'_{i} is the true target

• Python and Tensorflow

Target Selection

Neural Network Training Flowchart

Training Data Selection

o Events with z-vertex position in close proximity of physical target region

- Butanol \in [-2, 2]cm
- Carbon \in [5.5, 6.5]cm
- Polythene \in [15.5, 16.5]cm

Result on Target Selection

- Classified Carbon events from Butanol in z-vertex \in [2.5, 4.5]cm
- Some Carbon events in Polythene regions & Polythene events in Butanol region.
- Tail of Butanol events in Carbon region are missing. Under review [S. Fegan].

Evidence of Hydrogen Contamination on Carbon

target with z-vertex larger 5.0 cm and smaller than 7.5 cm. The blue histogram is scaled by 5.26. The FROST distribution from the 12C target region show a **narrow peak** at the mass of then neutron.

- $\circ\,$ Sharp peak at downstream end of Carbon foil \rightarrow ice built up while cooling the target
- \circ Ice formed on the right side of Carbon target: Z-vertex \in [6, 7]cm
- Plots from [Steffen Strauch]'s Analysis page of FROST Wikipage

Hydrogen Contamination on Carbon Target

Neural Network Training Flowchart for ice vs Carbon

Training Data for ice

• Tight cut on the $m_{\pi_0}^2$ peak on g9a-Carbon data (or MC sim) as ice events [F. Klein]. • Bound-nucleon (fermi p) \rightarrow broader distribution \rightarrow $\begin{array}{c} \text{Sharper peaks from} \\ \text{free-nucleon (ice)} \\ \text{Broad background from} \\ \text{bound-nucleon (carbon)} \end{array}$

Training Data for Carbon from g9b

- \circ g9b-carbon $m_{\pi_0}^2$ peak broader than g9a/Carbon ightarrow No ice on g9b
- During g9b, Carbon target was moved further in downstream.
- Shifted Z-vertex of g9b-Carbon events to use as training events for g9a [F. Klein].

Result on Hydrogen Contamination of Carbon Target

- Classified ice events from Carbon target in z-vertex \in [6, 8]cm
- It is likely that ice was formed in 20 K heat shield in between Carbon and Polythene targets.

Next Steps

- Apparently, classification on target selection and extraction of ice events were successful. However, it is still a blackbox...
 - Need to understand underlying logic of the model (Tensorboard).
 - Find ways to implement physics (relativistic kinematics, branching ratios, forbidden angles, etc) into optimizer or loss function.
- Nuclear physics experiments data cannot have 100% confident true values for training
 - Try Unsupervised Learning techniques: Clustering
 - Find ways to measure efficiency and accuracy of predictions
- Need more data to avoid overfitting problem.
- Computational cost is too high for small fraction of the total data.
- Energy loss reconstruction via ML regression.

Backup Slides

Backup: Constituent Quark Models & LQCD Predictions of Non-Strange Baryon Resonances

- Constituent Quark Models predicted states: 64 N^* & 22 Δ^*
- Experimentally confirmed state: 26 N^{*} & 22 Δ^{*}

Backup: Hall B Photon Tagger

- Bremsstrahlung radiation due to slowing of electrons by EM field of radiator (gold foil or thinyo diamond)
- Determine incoming photon energy of $\vec{\gamma}\vec{p} o \pi^0 p$ by $E_\gamma = E_0 E_e$
- g9a/FROST circularly polarized photons with $E_\gamma pprox$ 0.4 \sim 2.4 GeV
- Tagger was built by the GWU, CUA, & ASU nuclear physics group

Backup: Circularly Polarized Photon Beam

• Polarization transfer:

$$P(\gamma) = P(e)\frac{4x - x^2}{4 - 4x + 3x^2}$$

$$x = \frac{k}{E_0} = \frac{\text{photon energy}}{\text{incident electron energy}}$$

H. Olsen and L.C. Maximon, Phys. Rev. 114, 887 (1959)

21 / 28

Backup: Frozen Spin Target

C. Keith et al. Nucl Instrum Meth A 684, 27 (2012)

Backup: CLAS g9a/FROST Data

π^0 photoproduction

• From T Matrix to Helicity Amplitudes of $\vec{\gamma}\vec{p} \rightarrow \pi^0 p$:

$$\langle \mathbf{q} \ m_{s'} | \ T \ | \mathbf{k} \ m_s \ \lambda \rangle = \boxed{\langle m_{s'} | \ \mathbf{J} \ | m_s \rangle} \cdot \epsilon_{\lambda}(\mathbf{k}) \qquad \blacksquare \qquad H_i(\theta) \equiv \langle \lambda_2 | \ \mathbf{J} \ | \lambda_1 \rangle$$

• 4 Complex Helicity Amplitudes:

$$H_{1}(\theta) = \left\langle +\frac{3}{2} \middle| \mathbf{J} \middle| +\frac{1}{2} \right\rangle$$
$$H_{3}(\theta) = \left\langle +\frac{3}{2} \middle| \mathbf{J} \middle| -\frac{1}{2} \right\rangle$$

$$egin{aligned} \mathcal{H}_2(heta) &= \left\langle +rac{1}{2} \middle| \, \mathbf{J} \left| +rac{1}{2}
ight
angle \ \mathcal{H}_4(heta) &= \left\langle +rac{1}{2} \middle| \, \mathbf{J} \left| -rac{1}{2}
ight
angle \end{aligned}$$

24 / 28

Backup: Complete Experiment - 8 Polarization Observables

- Polarizable: incoming photons, target & recoiling nucleons
- 8 well chosen observables at fixed E_γ & angle ightarrow 4 helicity amplitudes

	UP_T and UP_R	UP_T and P_R	P_T and UP_R	P_T and P_R
UP _B	$\frac{d\sigma}{d\Omega}$	Р	Т	$T_{x'}, T_{z'}, L_{x'}, L_{z'}$
LPB	$-\Sigma$	$O_{x'}, (-T), O_{z'}$	H, (-P), -G	
CPB		$-C_{x'}, -C_{z'}$	<i>F</i> , – <i>E</i>	
UP. P. LP. CP. B. T. R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.				

• Helicity asymmetry E related to other observables via Fierz identities:

$$E^{2} + F^{2} + G^{2} + H^{2} = 1 + P^{2} - \Sigma^{2} - T^{2}$$

FG - EH = P - \Sigma T

Comparison with PWA (SAID, MAID, BnGa) predictions

Sample of Helicity Asymmetry E versus CM angle, θ_{cm} in ranges of $E_{\gamma} = 466 - 1825$ MeV and W = 1325 - 2075 MeV. The red, green, and black lines correspond to results from SAID, MAID, & BnGa respectively

- Measured asymmetry E will be compared to PWA predictions
- Measured asymmetry E into SAID data base \rightarrow new pole positions
- SAID, MAID & BnGa models agree at lower energies & deviate at higher energies

CEBAF Large Acceptance Spectrometer

Overtraining Limits

• Overtraining:

Excess training with only specific training data Classification succeeds on training data, but fails on actual data

Must determine adequate classifying variables & size of training data
Rule of thumb for Decision Tree algorithm:

$$L_D(h) \leq L_S(h) + \sqrt{\frac{(n+1)\log_2(d+3) + \log(2/\delta)}{2m}}$$

 $\begin{array}{l} L_D(h) = {\rm Error \ of \ classification \ on \ a \ training \ data \ set} \\ h = {\rm Error \ of \ classification \ on \ a \ training \ data \ set} \\ \delta = {\rm Confidence \ level \ of \ randomly \ selected \ training \ data \ points} \\ n = {\rm Number \ of \ nodes} \\ \end{array} \\ \begin{array}{l} L_S(h) = {\rm Error \ of \ classification \ on \ a \ training \ data \ set} \\ d = {\rm Number \ of \ variables} \\ m = {\rm Size \ of \ training \ data \ sets} \\ {\rm on \ \& \ d \ inversely \ proportional \ to \ } \\ L_S(h) = {\rm Error \ of \ classification \ on \ a \ training \ data \ set} \\ \end{array}$