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Motivation

CLAS g9 /FROST Experiment

o Polarization Observables — Helicty Amplitudes — Resonances (PWA)
o Polarizable: Incoming photons, target & recoiling nucleons

H UPT and UPR ‘ UPT and PR ‘ PT and UPR ‘

PT and PR
UPg Era P T T, Ty, Ly, Ly
LPg - Ox,(=T),0, | H,(-P),—G
CPg

—Co.—Cy F,—E

UP, P, LP. CP, B, T, R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.

o g9a/FROST - Circularly polarized photons with E, ~ 0.4 — 2.4 GeV and
longitudinally polarized proton target:

Circularly polarized
tagged photon beam

p p
.7 Longitudinally polarized
7
i P proton target
P reconstructed in p (Frozen-Spin Butanol Target)
the CLAS detector



Motivation

Helicity Asymmetry E

@ Double polarization observable E is the helicity asymmetry of the

cross section:
03/2 —01/2 3 1

E= 732 712 for — & = are total helicty states
0'3/2 + 0'1/2 2 2

° ZTU2 of polarized beam & polarized target for E (theo. & exp.):

<dQ> = g (1T (PPN 3 E) (dQ) T A-Fop-Ax

13 13
272 292
@ E is measured via:

D = dilution factor

£ 1 1 N% - N% P, = Polarization of target in 2
- Ef P,Py Ns + N P, = Polarization of beam
2 2
N

3 1 = # of events
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Motivation

g9a/FROST Target setup

B A
FROST Zero Heat Load Target Insert

Compression nut

PCTFE Target Cup Kapion sealing gasket
for Mixing Chamber

(5 g butanol)

Aluminum beam window
Side view of FROST target with beam entering from the right. (A) Primary head

exchanger, (B) 1 K heat shield, (C) Holding coil, (D) 20 K heat shild,(E) Outer vac- e e P A
wum can, [(F) Polyethylene target, (G) Carbon target,(H) Butanol target |(J) Target lock. Wrench is removed aflor gasket is compressed.
insert, (K) Mixing chamber, (L) Microwave waveguide, and (M) Kapton cold seal.

CLAS center
‘ i i
Butanol Carbon (C) Polysthylene (CH2)
5.28 cm long 1.22 mm thick 3.45/mm thick
| |
i i
Ocm 6.15¢cm 15.95cm
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Motivation

ML Objectives: Target Selection & lIce on Carbon

o Target Selection

- Events with z-vertex € [2, 5]cm, ors
uncertain whether v hit Butanol or o
Carbon

025

hit position y (cm)
8

s
8

-0.75

-1.00

o lce on Carbon

- Carbon events (bound-nucleon) .
expected to have broader m2 peak
due to Fermi motion.

- Sharp peak (free-nucleon) observed
in the Carbon target region.
Carbon events are scaled by ~10.




Target Selection

Banks Used

o GPID - pid, E, p, B¢, Bm, m, and E,
o MVRT - vertex positions
o Only single tracked events with protons

o Removed events outside of target cup (r = 7.5mm) - He-Bath outside

o Removed events with E, ~ 0
o No Energy loss correction yet
o No fiducial cuts yet

E E,

12 14 1

06 08 10 12 14 16
Energy o ecod partce (GeV)

2
M,

04 06 08 10
Energy of pholon (GeV)

Ipl

o4 2 600 025 050 075 100 125 150 175
p_sbs (GaVic)

00 02
3 (Gevict)

6

m 12 Bvs|pl

o 1 12 %o 025 080 075 100 125 150 175 200

08 09 10
mass of ecol parice (GV) [

Hit position xy ZVertex

<0 05 00 05 10 15
yiem)
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Target Selection

Neural Network Model Setup

o Two fully-connected (dense) neural layers

1 Dense layer with 15 nodes - 15 parameters:

= E B, B Bm Ey, m, m%, pid.|pl, px, py, Pz, x, v, and 2.
- Too many parameters + insufficient train data — Too specific training — Overfitting (fail)

2 Dense layer with 3 nodes - one for each target
— For each event, this layer returns an array of 3 probability scores (butanol, carbon, or polythene) that sum to 1
o Optimizer used: AdamOptimizer
o Loss function used - Sparse categorical cross entropy:
- Hy(y) = —>_;yilog(yi) .where y; is the predicted target
and y/ is the true target
o Python and Tensorflow
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Target Selection

Neural Network Training Flowchart

Loss fn

Loss score

Optimizer

Weight update
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Target Selection

Training Data Selection

Butanol Training
Carbon Training
Polythene Training

)*25 0.0 25 50 75 100 125 15.0
Z-Vertex Position (cm)

o Events with z-vertex position in close proximity of physical target region

- Butanol € [-2, 2]cm
- Carbon € [5.5, 6.5|]cm
- Polythene € [15.5, 16.5]cm
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Target Selection

Result on Target Selection

Polythene.

2000 Butanol
Butanol Carbon
1200 Ealiza Butanol Peak: 0.0313 GeV.
Carbon Peak: 0.0026 GeV
1750
1000
1500
800 1250
1000
600
750
400
500
200
250
0 0
10 -5 5 5 2 05 -04 03 -02 01 00 01 02 03 04
ZVertex Position (cm)

m2, (Gev?)

o Classified Carbon events from Butanol in z-vertex € [2.5, 4.5]cm
o Some Carbon events in Polythene regions & Polythene events in Butanol region.
o Tail of Butanol events in Carbon region are missing. Under review [S. Fegan].
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Hydrogen Contamination on Carbon Target

Evidence of Hydrogen Contamination on Carbon

10°
T T
500
2
g < 500
3 3
Y
E
0 i
0.8 1.0
Missing M Vv — .
issing Mass (GeV) 5 7 s 0

Figure 2: Missing-mass distribution for the n+n channel from &
FROST g9a data. W = 1.25 - 1.50 GeV, integrated over all
angleslEvensinihelredinistog amiateligmiihelbutanal Figure 3: Missing-mass distribution as a function of the MVRT z &7
target and events in the blue histogram are from the 12C vertex of the m+. The shape of the missing-mass distribution
target with z-vertex larger 5.0 cm and smaller than 7.5 cm. The strongly changes with z. Event selection: p; > 0.2 GeV/c and 8;, >
blue histogram is scaled by 5.26. The FROST distribution from 20°.

the 12C target region show a narrow peak at the mass of

then neutron.

O Sharp peak at downstream end of Carbon foil — ice built up while cooling the target
o Ice formed on the right side of Carbon target: Z-vertex € [6, 7]cm
o Plots from [Steffen Strauch]’'s Analysis page of FROST Wikipage

Vertex z (cm)
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Hydrogen Contamination on Carbon Target

Neural Network Training Flowchart for ice vs Carbon

.—> Loss fn

Loss score

Optimizer

Weight update
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Hydrogen Contamination on Carbon Target

Training Data for ice

Event Selection for ICE - m2,

————— ICE training
200 s carbon

Peak  =0.0245 GeV

175 o =0.1595 GeV
150
125
100
75
50
25

]

= - e
%5 -04 03 02 -01 00 o1
m2, (Gev?)

o Tight cut on the m2, peak on g9a-Carbon data (or MC sim) as ice events [F. Klein].

Sharper peaks from
free-nucleon (ice)
Broad background from
bound-nucleon (carbon)

- Bound-nucleon (fermi p) — broader distribution —
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Hydrogen Contamination on Carbon Target

Training Data for Carbon from g9b

g9a Carbon g9b Carbon

e carbon 200 == g9b_carbon

500 o =0.1587 GeV 175 o =0.5012 GeV

150
400

125
300 100

75
200

50
100
25

J00 075 -050 025 000 025 050 075 100 800 -075 -050 -025 000 025 050
m2, (Gev?) m2 (Gev?)

0.75 1.00

0 g9b-carbon mf,o peak broader than g9a/Carbon — No ice on g9b
o During g9b, Carbon target was moved further in downstream.
o Shifted Z-vertex of g9b-Carbon events to use as training events for g9a [F. Klein].
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Result on Hydrogen Contamination

0.50

o
N
&

hit position y (cm)
o
2
8

-0.25

-0.50

-0.75

-1.00

Hydrogen Contamination on Carbon Target

6
hit position z (cm)

Carbon
lce

160

140

120

100

4 6 8
Z-Vertex Position (cm)

o Classified ice events from Carbon target in z-vertex € [6, 8]cm

of Carbon Target

Carbon
lce

o It is likely that ice was formed in 20 K heat shield in between Carbon and

Polythene targets.
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Next Steps

Next Steps

- Apparently, classification on target selection and extraction of ice
events were successful. However, it is still a blackbox...

- Need to understand underlying logic of the model (Tensorboard).
- Find ways to implement physics (relativistic kinematics, branching ratios,
forbidden angles, etc) into optimizer or loss function.

- Nuclear physics experiments data cannot have 100% confident true
values for training

- Try Unsupervised Learning techniques: Clustering
- Find ways to measure efficiency and accuracy of predictions

- Need more data to avoid overfitting problem.
- Computational cost is too high for small fraction of the total data.

- Energy loss reconstruction via ML regression.
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Next Steps Constituent Quark Models and LQCD

Backup: Constituent Quark Models & LQCD Predictions
of Non-Strange Baryon Resonances

3000 4 ————

= F = = 20 N*
= i = EQI - 1
| - = [ - 1
2500 = [F = = [~ 18 [N | :
= = = = | — |- , @
== E |5 — - E’:% - =
- _ B =B 16} &= | = = =
Sl | —= | = —
% 2000 e — ool o — - ==
2 = Ewl= o 14fe= !
i |l £ f=— =
== E 12 1 -_—
[
1500 — [— | e
- — 1
10 |
I
I
08f — !
1000 Lo H
sm || [12+ 372+ [572+ [ 72+ || 072+ [t 13724 [ 172- | [ 302- | 572 [ 72- | [ or2- |[ 11727 [1372- 06 1+ 3+ 5+ 1+1 1- 3- 5- 1
Lova||| B || Bs | Fis || Fig || Huo ||Hy i Kiss|| Sut || Dia || Dis || Gra || oo || Tiwa | Tiis 2 2 2 213 2 2 2
Constituent Quark Model Lattice QCD

o Constituent Quark Models predicted states: 64 N* & 22 A*
o Experimentally confirmed state: 26 N* & 22 A* 10
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Next Steps Polarized Photon Beam

Backup: Hall B Photon Tagger

@ Bremsstrahlung radiation due to slowing of electrons by EM field of
radiator (gold foil or thinyo diamond)

@ Determine incoming photon energy of 55 — 7°%p by E, = Ey— E.
@ g9a/FROST - circularly polarized photons with E, ~ 0.4 ~ 2.4 GeV
o Tagger was built by the GWU, CUA, & ASU nuclear physics group

Photons.

S
\Ramam
Focal Plane,
384 Front

(> energy)

6Lbacking
counters

(> timing) N
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Next Steps Polarized Photon Beam

Backup: Circularly Polarized Photon Beam

Linearly Bremsstrahlung Circularly

Polarized ‘ Polarized

Electron Beam Photon Beam

T T T T T T T T T o

@ Polarization transfer: I A
ool B R

L iy | J

0.8 /{/:;;’y -

4—X _ X2 % 07 Cn;;gplze[n: screening: _|

P()=Ple) 12 s

4 — 4x 4 3x 8 ool 2

g 05 —

k photon energy oal- .

Eo  incident electron energy 0sl- .
H. Olsen and L.C. Maximon, Phys. Rev. 114, 887 (1959) 02 o.‘a ‘ 0‘4 I 0‘_5 ‘ 0!5 I 0!7 I o?s I Q_‘g o
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Next Steps Frozen Spin Target

Backup: Frozen Spin Target

The FroST target and its components: g I S

A:Primary heat exchanger g e penn _~—Take Beam

B:1K heat shield 5 V\“ —
C:Holding coil M~

D: 20 K heat shield Days

E: Outer vacuum can (Rohacell extension) B A

F: CH2 target

G: Carbon target

H: Butanol target

J: Target insert

K: Mixing chamber

L: Microwave waveguide
M:Kapton coldseal

Performance Specs:
Base Temp: 28 mK w/o beam, 30 mK with F
Cooling Power: 800 pyW @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK
Polarization: +82%, -90%
1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol)

Roughly 1% polarization loss per day.

C. Keith et al. Nucl Instrum Meth A 684, 27 (2012)
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Next Steps Frozen Spin Target

Backup: CLAS g9a/FROST Data

70
,.\1_.TIY—..T,7..-,T‘,..=
'.‘é ® y+p total ] Po(1232)
E 8
[," ﬁ‘wmu:hﬂ . ”h__‘.{_ 60 Dy5(1520)
1
3 2 P e
B 3 i ] ) 50
LY b oo
g . . oo
;!ﬂéw ; 9. = 40
3 e T T | 2l <
Wil i : : i RLLTITE ISP I = F)5(1680)
: : :
a8 ER=R SN
- . 5 s A KExe L 30
o 1 5 ¥ e okex
104 ] i v @ w0 g o5 o ¢ g 09
0.5 1 1.5 2
E/(GeV) 20
@ Select only 75 — 7%p events
10
e 7p — 7%p resonance channels
© Appropriate enegy bins - include 9700 400 500 00 1000 1200 1400
all resonances (< 1500 MeV) E. (MeV)
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Next Steps Frozen Spin Target

79 photoproduction

Circularly polarized 0
tagged photon beam T
)
p

.
v

,7  Longitudinally polarized
proton target

,
N 7’
P reconstructed in 4 P (Frozen-Spin Butanol Target)

the CLAS detector

e From T Matrix to Helicity Amplitudes of 75 — 7°p:

(@ ma| Tlkme ) =[(ma[J|me)|-ex(k) W Hi(0) = (Mol I A1)

@ 4 Complex Helicity Amplitudes:

o () = (A
H3(6) = <+2‘J ‘—;> Ha(6) = <+;‘J ‘_;> B



Next Steps Frozen Spin Target

Backup: Complete Experiment - 8 Polarization Observables

@ Polarizable: incoming photons, target & recoiling nucleons

@ 8 well chosen observables at fixed E, & angle — 4 helicity amplitudes

| UPt and UPg | UPt and Pg | Pr and UPg | Pt and Pg
UPg g% P T TX/, Tz/, LX/, L,
LPg -¥ Ov,(-T),0, | H,(—P),-G
CPs —Cv,—Cy F,—E

UP, P, LP, CP, B, T, R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.

@ Helicity asymmetry E related to other observables via Fierz identities:

FG—EH=P—-XT

E?+F2+G*+H*=1+P* 52— T2
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Next Steps Frozen Spin Target

Comparison with PWA (SAID, MAID, BnGa) predictions

w 1 W=1525WeV E_ =466 MV w o] W=1T75MeV,E_= 538 MeV w | W= 1525 eV, E <TI0 MeV | w 1| W= 1575 MeV, E_= 852 Me¥
s i ao|

Preliminary

13 SAID 13
asE WAID ast
, Lot S e TR, T .
B T T N BN L T T R R T T E I TR T T P R T T T
a9} o085y ) (foa)
o+ W= 1875 MeV, E = 1404 MeV '_
o
wl  Preliminary
I
o
.
)
)
|
P
i} . | \ | | | |
- ST AR 06 a4 43 @ 82 G4 @R 08 4 T OB AF 44 47 @ B2 04 05 08 1
coslioal o) coslh_.]
Sample of Helicity Asymmetry E versus CM angle, ., in ranges of E, = 466 — 1825 MeV/ and W = 1325 — 2075 MeV/. The red, green, and black lines correspond to results from SAID, , & BnGa respectively.

@ Measured asymmetry E will be compared to PWA predictions

@ Measured asymmetry E into SAID data base — new pole positions

e SAID, & BnGa models agree at lower energies & deviate at
higher energies
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Next Steps Frozen Spin Target

CEBAF Large Acceptance Spectrometer

Large-angle Calorimeter
I Electromagnetic Calorimeter

Cerenkov

Counters

Superconducting
Toroidal Magnet

Drift Chambers
3 Regions

\

Electromagnetic
Shower Counters.

Time-of-Flight Scintillators

¢
Mini-torus Coils

Main Torus Coils—
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Next Steps Frozen Spin Target

Overtraining Limits

@ Qvertraining:

Excess training with only specific training data

!

Classification succeeds on training data, but fails on actual data

@ Must determine adequate classifying variables & size of training data

@ Rule of thumb for Decision Tree algorithm:

Le(h) + \/(n +1) logy(d + 3) + log(2/9)

Lp(h) <
2m
Lp(h) = Error of classification on actual data set Ls(h) = Error of classification on a training data set
h = Error of classification on a training data set d = Number of variables

& = Confidence level of randomly selected training data points m = Size of training data sets

n = Number of nodes e n & d inversely proportional to Ls
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