DC Alignment Update

Timothy B. Hayward

CLAS Collaboration Meeting November 14, 2018

CHARTERED 1693

 Knowing the precise position of the drift chambers is critical for track reconstruction.

Calibration Data

- run 2467, 2.2 GeV, (B=0), empty target
- (Latest) reconstruction with coatjava 5c.6.9
- Minimizing the "residuals" from the TimeBasedTrkg:TBHits bank.
- Cuts on tracks: nphe > 2, calorimeter energy > 0.5 (2 GeV track)

		{"name":"doca",	"id":8,	"type":"float", "info":"doca of the hit calculated from TDC (in cm)"},
Table	[/geometry/dc/region]	{"name":"docaError",	"id":9,	"type":"float", "info":"uncertainty on doca of the hit calculated from TDC (in cm)"},
Variation	may_2018_engineers	{"name":"trkDoca".	"id":10.	"type":"float". "info":"track doca of the hit (in cm)"}.
Created	2018-05-25 12:34:56	{"name":"timeResidual"	"id"•11	"type":"float" "info":"time residual of the hit (in cm)"}
Run range	0 - inf.		, 10,11,	type . Hoat , Hino . time residual of the hit (in the fit);
Author	thayward	{ "name": "fitResidual",	1d":12,	"type":"float", "info":"fit residual of the hit (in cm, from KF)"}
Exact id	/geometry/dc/region:0:may_2018_engineers:2018-05-25_12-34-56	{"name":"LR",	"id":13,	"type":"int8", "info":"Left/Right ambiguity of the hit"},
[Download to	ext data]			

Early Mishaps: Time Calibration

 Without time calibration, there are oddly shaped patterns, such as double peaks or asymmetric distributions.

Residual (micrometers)

Default Geometry: Fixed Time Constants

With the proper time calibration we get nice, symmetric Gaussianlike distributions.

Residual (micrometers)

Early Mishaps: Wire Indexing

Default Geometry: Correct Indexing

The Plan

Data:

- Use ccdb alignment tables to adjust the location of the 3 chambers.
- Find the shifts and rotations that minimize the residuals.

Show 50 ᅌ	entries								Search:	
region	sector		component	dx	dy	dz	c	ltheta_x	dtheta_y	dtheta_z
1	1	0		0	0	0	0	1	0	0
1	2	0		0	0	0	0		0	0
1	3	0		0	0	0	0		0	0
1	4	0		0	0	0	0		0	0
1	5	0		0	0	0	0		0	0
1	6	0		0	0	0	0		0	0
2	1	0		0	0	0	0		0	0
2	2	0		0	0	0	0		0	0
2	3	0		0	0	0	0		0	0
2	4	0		0	0	0	0		0	0
2	5	0		0	0	0	0		0	0
2	6	0		0	0	0	0		0	0
3	1	0		0	0	0	0		0	0
3	2	0		0	0	0	0		0	0
3	3	0		0	0	0	0		0	0
3	4	0		0	0	0	0		0	0
3	5	0		0	0	0	0		0	0
3	6	0		0	0	0	0		0	0
Showing 1 to 1	8 of 18 entries								First Previous	s 1 Next Last

Nominal Shifts

Data

 Create tables of nominal shifts by reconstructing with each of the possible shifts and rotations and observing the results.

ow 100 📀 ei	ntries								Search:	
region	sector		component	dx	dy	dz		dtheta_x	dtheta_y	dtheta_z
	1	0		0	0	0.5	0	0	0	
	2	0		0	0	0.5	0	0	0	
	3	0		0	0	0.5	0	0	0	
	4	0		0	0	0.5	0	0	0	
	5	0		0	0	0.5	0	0	0	
	6	0		0	0	0.5	0	0	0	
2	1	0		0	0	0	0	0	0	
	2	0		0	0	0	0	0	0	
2	3	0		0	0	0	0	0	0	
2	4	0		0	0	0	0	0	0	
2	5	0		0	0	0	0	0	0	
!	6	0		0	0	0	0	0	0	
1	1	0		0	0	0	0	0	0	
;	2	0		0	0	0	0	0	0	
5	3	0		0	0	0	0	0	0	
5	4	0		0	0	0	0	0	0	
5	5	0		0	0	0	0	0	0	
	6	0		0	0	0	0	0	0	

Angular Affects

 Nominal shifts must be produced from a distribution that matches the angular distribution of the real data.

Tabulate the Shifts

Ambiguities

r1_z 0.2 cm shift

Results from trial and error

may_2018_engineers thayward_test_0004 thayward_test_0032

Elastic Peak

- Elastic peak is a derived quantity and not the ultimate measure of alignment success.
- Significant improvement since alignment began.

Conclusions

- Alignment solutions have been found to a ~150 micron level without full imposition of the vertex position.
- Incorporate full sector dependent beam vertex positions using the new coatjava 5b.7.1.
- Find unique *physical* solution based on minimizing residuals with MINUIT and outside information.
- Goal of finishing alignment process ahead of the spring cooking.