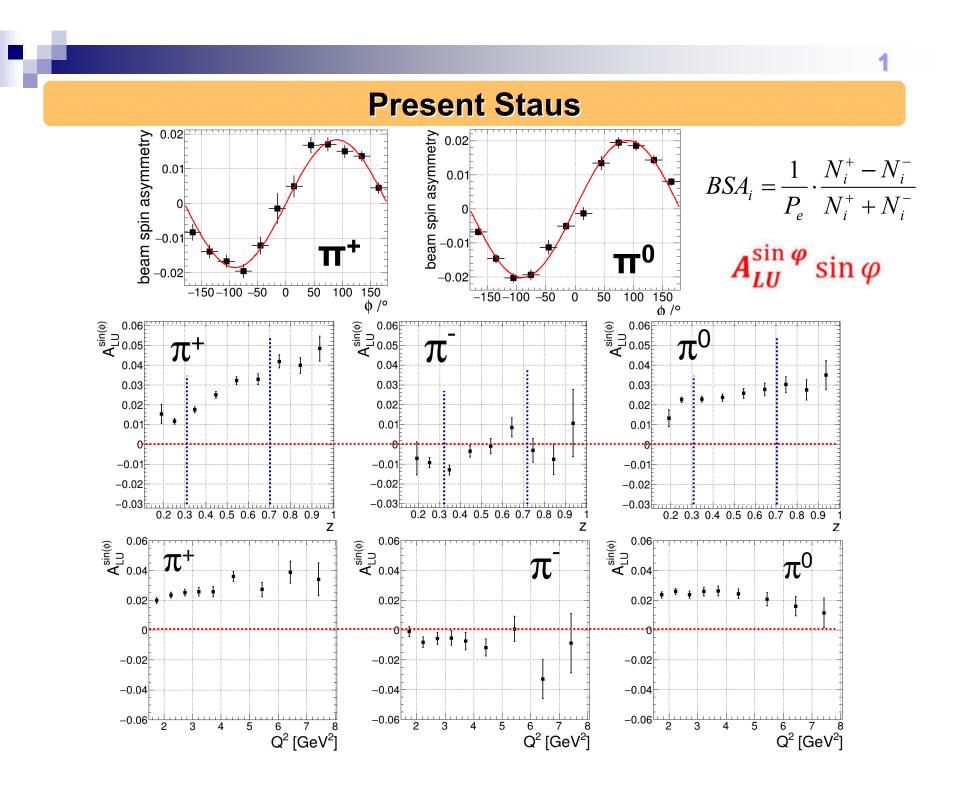


CLAS collaboration meeting, Nov 13 – 16 2018, JLAB

Thursday, November 15, 2018

Outlook and Perspectives: SIDIS Pion Beam Spin Asymmetries with CLAS12 at 10.6 GeV



JNIVERSITÄT

ESSEN

Stefan Diehl¹, Harut Avakian²

¹University of Connecticut ¹Justus Liebig University Giessen ²Jefferson Laboratory

Oulook and Perspectives

- The presented results are based on only close to 2 % of the approved RG-A beamtime / 10% of the spring run
- Next steps:
 - The behaviour at large Q^2 and p_T values will be studied
 - All 3 moments will be extracted
 - A multidimensional analysis will be perfomed
 - Systematic effects will be investigated

• Requirements:

- Full spring run dataset cooked for multidimensional binning and reasonable statistical errors at high Q² and p_T
- FTOF calibrations and corrections for particle ID of charged pions
- PCAL / ECAL claibration (time + energy) for neutral pions
- Correct kinematics for the determination of the kinematic variables (resolution is less critical)
- SIDIS MC for acceptance studies etc.

Additional requirements from Anselm for the di-hadron BSA analysis

- Di-hadron BSA shows ~quadratic dependence on tracking efficiency and sample purities
 - \rightarrow improved tracking at lower angles and lower momenta is very important.
- **analysis tools:** 2D fits and 2D histograms with uncertainties in the java framework
- MC production: 'as much as possible'
 - → contamination studies and closure studies need multiples of what is available in data
 - \rightarrow phase space we want to cover with the MC has to be defined