
CLAS12 First Experiment

Status Report and Path to Publications

Latifa Elouadrhiri

CLAS Collaboration Meeting November 14, 2018

Office of

Science

class

Hall B/CLAS12 RG-A Experiments

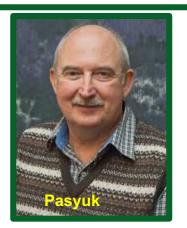
Proposal	Physics	Spokespersons				
E12-06-108	Hard Exclusive Electroproduction of π^0 , η	P. Stoler, K. Joo, <u>V. Kubarovsky</u> , M. Ungaro, C. Weiss				
E12-06-108A	Exclusive N*->KY Studies with CLAS12	D.S. Carman, R. Gothe, V. Mokeev				
E12-06-108B	Transition Form Factor of the η' Meson with CLAS12	M. Kunkel, D. Lersch				
E12-06-112 Proton's Quark Dynamics in SIDIS Pion Production		H. Avakian, K. Joo, Z.E. Meziani, B. Seitz				
E12-06-112A Semi-inclusive Λ Productiuon in Target Fragmentation Region		M. Mirazita				
E12-06-112B	Higher Twist Colinear Structure of the Nucleon	S. Pisano, <u>M. Mirazita</u>				
E12-06-119 Deeply Virtual Compton Scattering at 11 GeV		F. Sabatie, A. Biselli, H. Egiyan, <u>L. Elouadrhiri</u> , M. Holtrop, D. Ireland, W. kim				
E12-09-003	Excitation of Nucleon Resonances at High Q ²	R. Gothe, V. Burkert, P. Cole, K. Joo, V. Mokeev, P. Stoler				
E12-11-005	Hadron Spectroscopy with Forward Tagger	M. Battaglieri, R. De Vita, C. Salgado, S. Stepanyan, D. Watts, D. Weygand				
E12-11-005A	Photoproduction of the Very Strangest Baryons	L. Guo, M. Dugger, J. Goetz, E. Pasyuk, I. Strakovsky, D. Watts, N. Zachariou, V. Ziegler				
E12-12-001	Timelike Compton Scattering & J/ψ Production in e+e-	P. Nadel-Turonski, M. Guidal, T. Horn, R. Paremuzyan, S. Stepanyan				
E12-12-001A J/ψ Photoproduction and Study of LHCb Pentaquarks		<u>S. Stepanyan</u> , M. Battaglieri, A. Celetano, R. De Vita, V. Kubarovsky				
E12-12-007	Exclusive ϕ Meson Electroproduction with CLAS12	P.Stoler, C. Weiss, F.X. Girod, M. Guidal, V. Kubarovsky				

Office of

Experiment Parameters

Duration:	139 PAC days
	80 days high luminosity (10 ³⁵ cm ⁻² s ⁻¹)
	39 days low luminosity (5x10 ³³ cm ⁻² s ⁻¹) in Progress
	20 days torus polarity = negative
Energy:	11 GeV
Target:	LH2

Experiment	parameters			
Beam energy	10.6 GeV, electrons polarized			
Beam current	2nA (2.5 x 10 ³³) to 75 nA (1x10 ³⁵)			
Torus field and polarity	100% (75% negative particles in-bending & 25% out-bending)			
Solenoid field and polarity	100% (nominal)			
Trigger(s)	 Electron trigger (HTCC/DC/PCAL/EC) Electron in FT + 2 hadrons in CLAS12 Muon trigger Calibration/Normalization Triggers 			
Target	5 cm LH2			


Office of

CLAS12 First Experiment Coordination

Experiment coordinator

Jefferson Lab

Physics Division Liaison (PDL)

Deep inclusive & SIDIS E12-06-112, E12-06-112A and E12-06-112B

Quasi photo-production *E12-12-001 and E12-12-001A*

Nucleon structure E12-09-003, E12-06-108A, E12-06-108B

MesonX program E12-11-005 and E12-11-005A

Office of

Run Coordination

- Physics Division Liaison: Eugene Pasyuk
- Hall Coordinator: Denny Insley
- Experiment Coordinator: Latifa Elouadrhiri
- Run Coordinators:
 - Dan Carman
 - Maxime Defurne
 - Raffaella DeVita
 - Latifa Elouadrhiri
 - Lei Guo
 - Andrey Kim
 - Nick Markov
 - Rafayel Paremuzyan
 - Stepan Stepanyan
 - Kubarovsky, Valery

Office of

Run Coordination/Meetings

Daily RC meetings

- Daily execution of the run

Weekly First experiment meetings

- Experiment monitoring
- Detector calibration/Alignment
- Software validation using data and MC simulations
- High level/Detector efficiency/physics analysis
- DNP Preparation
- Path to Publications (Our next Focus)
- Weekly TCB meeting
 - Detector hardware performances
 - Maintenance weekly planning

In addition meetings with experiment spokespersons

are scheduled as needed

Documentation can be found CLAS12 First Experiment

Hall-B

CLAS12ANA

RG-A- RUN Periods

Schedule	Experiment	Energy (GeV)	Polarization	Days	Total days					
CY 2018										
2/5- 5/07	RG-A	6.4 & 10.6	max							
9/26 -10/23	RG-A	10.6	max	28						
10/26 - 11/25	RG-A	10.6	max	31						
11/29 – 12/09	RG-K	7.5	max	11						
12/13 – 12/19	RG-K	6.5	max	7	18					
	CY 2019									
03/11 - 04/07	RG-A	10.6	max	28	87					

Office of Science

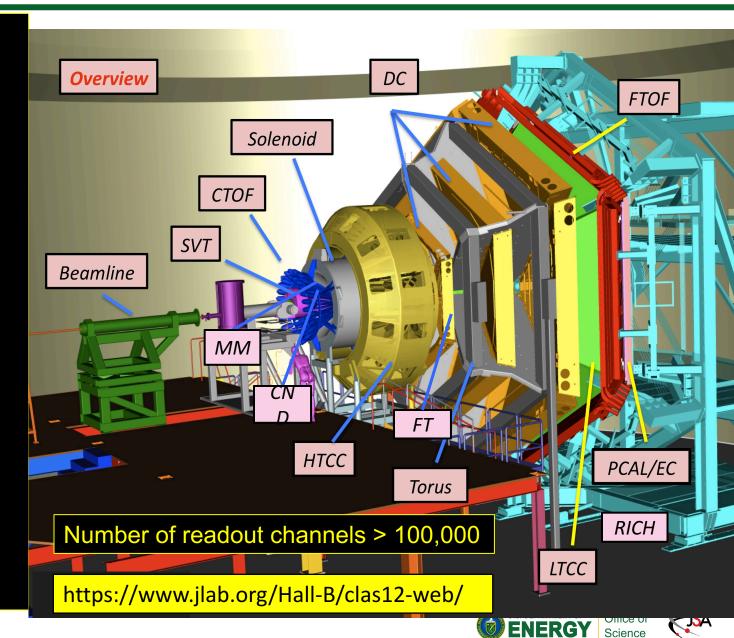
RG-A Experiment Configuration

- The experiment configuration for the fall 2018 RG-A run is very similar to the spring 2018 RG-A run:
 - Forward tracker (FMT) removed downstream of target
 - Two LTCC boxes removed from Forward Carriage
 - Improvement to the cooling system of the SVT
 - Production runs (75% with torus -100%, 25% with torus +100%)
- Start up of the experiment include:
 - Background characterization of CLAS12
 - Luminosity scan
 - Detector & Trigger setting
- Our weekly plans will typically be as follows:
 - Moller polarimeter run/Change of the HWP
 - Empty target run
 - Low luminosity run
- Requirements for beam to Hall B:
 - Beam size at target < 200 mm
 - Position stability at target < 200 mm
 - Current stability ~5%
 - Beam polarization > 86%

Office o

CLAS12 Detector Systems

Forward Detector (FD)


- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter
- Forward Tagger
- RICH detector

Central Detector (CD)

- Solenoid magnet
- Silicon Vertex Tracker
- Central Time-of-Flight
- Central Neutron Detector
- MicroMegas

Beamline

- Diagnostics
- Shielding
- Targets
- Polarimeter
- Faraday Cup

- CLAS12 detector/DAQ performed well during RGA
- Two issues from our side:

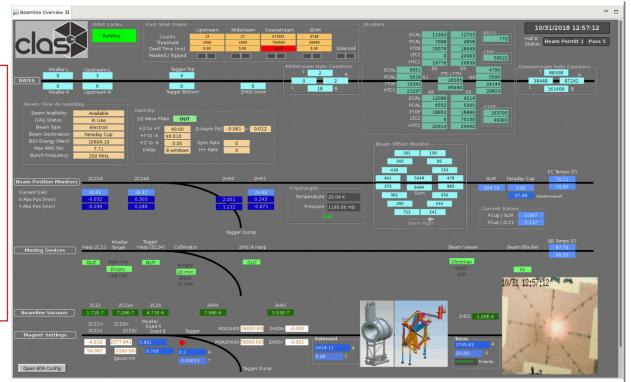
– Issue with the control system of the target at the beginning of the run. This has been fixed by Saclay team, excellent effort and team work!

 Fast Dump of the solenoid that several times and it is now being addressed

Solenoid – Fast dumps issues

- 6 fast dumps at low current (less than full field of 2416 A) commissioning was completed in Sept 2017
 - > 3 fast dumps due to PLC/software threshold voltage limits being too sensitive to noise
 - > 2 fast dumps due to hard wired QD thresholds being too sensitive to noise
 - > 1 fast dump due to an ESR cryogenic event
- □ After commissioning was completed, the magnet regularly achieved 2416 A (5.0 T)
 - > A total of 15 fast dumps
 - 1 fast dump attributed to a malfunctioning voltage panel switch → *switch now replaced*
 - 1 fast dump attributed to an incorrect voltage threshold setting → setting now corrected
 - 13 fast dumps <u>correlated</u> to LCW make-up water flow rate increase causing a temporary loss of cooling water flow to the solenoid magnet power supply → this is presently being investigated
- □ Hall B engineering is investigating a way to minimize this LCW make-up water flow effect
- □ A transducer in the LCW line been added and may be used to initiate a controlled ramp down as a temporary measure
- □ We will continue working to reduce the overall cryogenic recovery time (presently 6 hours) after a fast dump
- Brief summary data available through following link to access the events (B. Eng, DSG entry)

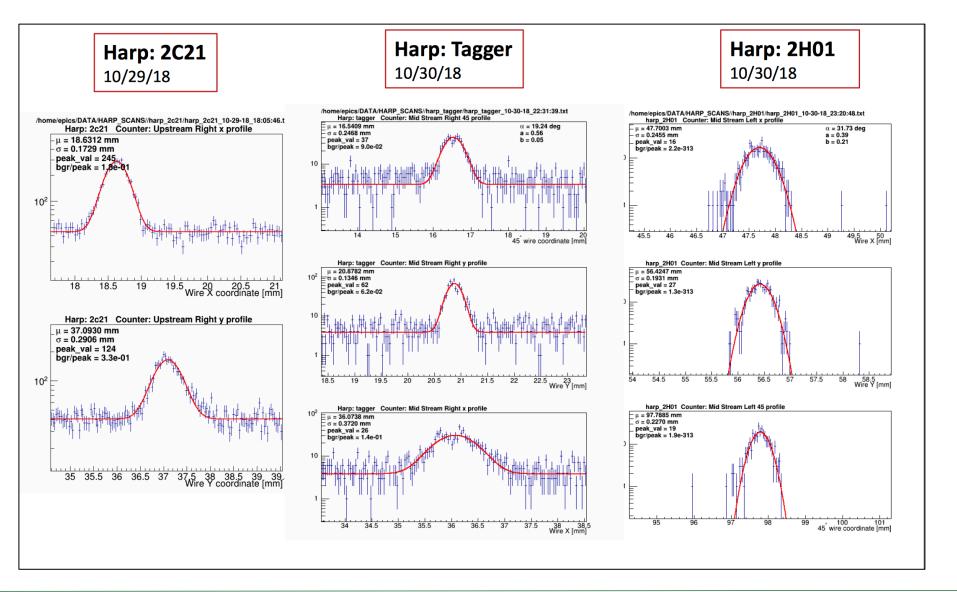
https://userweb.jlab.org/~beng/images/Solenoid%20Fast%20Dumps%20&%20LCW/



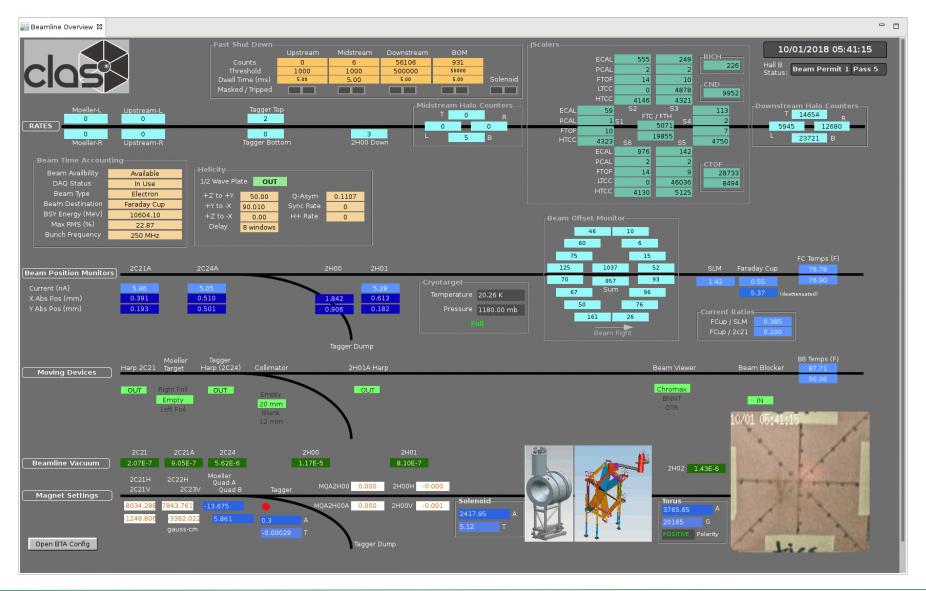
Office o

Beam Quality issues

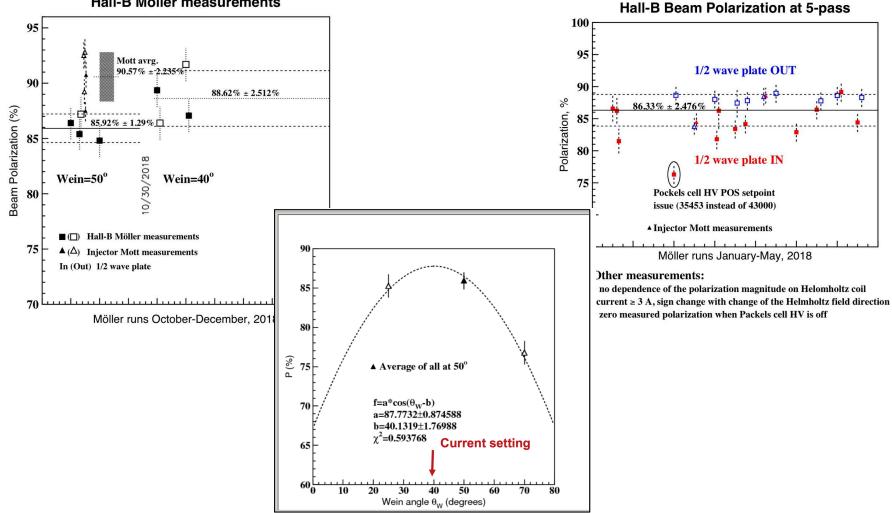
- High rates on upstream, midstream & downstream halo counters at the beginning of the week-High rate of FSD trips
- Also spikes in beam current observed


- Adjusting the slit from 15.9 to 16.20 appeared to help with the halo trip rate. Things are more quiet and stable since 10/31 swing shift.
- A trim card power supply was changed for the vertical Wein, seems to help clear the beam current spikes: https://logbooks.jlab.org/entry/3619173 & https://logbooks.jlab.org/entry/3619180, since 11/1 day shift.

Office of



Beam Overview



RG-A Measured Polarization

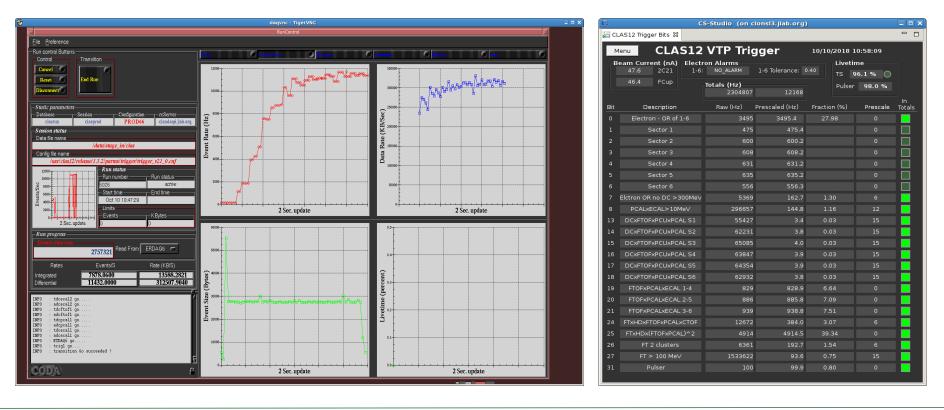
Hall-B Möller measurements

https://logbooks.jlab.org/entry/3617660

Office of

Beam Energy

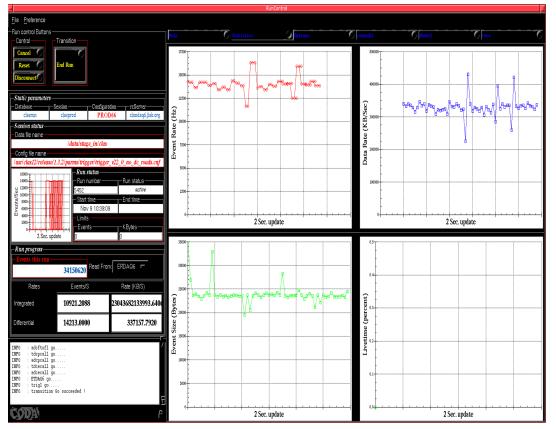
Spin Doctor 1-1 _												×							
North	Injector Energy (MeV)118.4862Optimum Wien Angle-85.00North Linac Energy (MeV)1050South Linac Energy (MeV)1050																		
	Calc	Opt		Pass	Energy (MeV)	Sx	Sy	Sz	(-180:180)	(-90:90)	Helicity	WienAngle	FoM	Σ (spinx) j	∑ (spiny)	Σ (spinx)			
			HallA	2	4317.11	-0.43402	0.00001	-0.90090	-154.28	25.72	-1	-25.72	0.261						
			HallB	5	10575.33	-0.99621	-0.00005	-0.08699	-94.99	85.01	-1	-85.01	1.000	19705.010	0.018	20528.262			
			HallC	5	10573.30	0.99562	-0.00003	0.09346	84.64	84.64	+1	-84.64	1.000						
			HallD	5.5	11609.68	-0.97288	-0.00006	-0.23130	-103.37	76.63	-1	-76.63	0.979						
	Exit Re-run Elegant & Plot Less																		



Office of Science

CLAS12 DAQ/Trigger in fall 2018

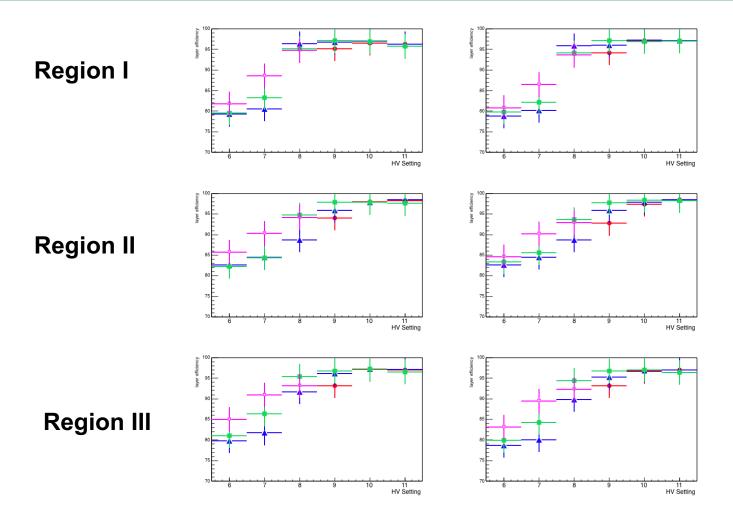
- Original DAQ requirements: 10kHz event rate, 100MB/sec data rate, LT>90%
- Trigger decision is based on PMT detectors and tracks in drift Chambers and configured for 3 groups of experiments: "electrons", "mesonX", "muons"
- Inbending: production rates at 45nA beam: 12kHz event rate, 300MB/sec data rate, LT=96%



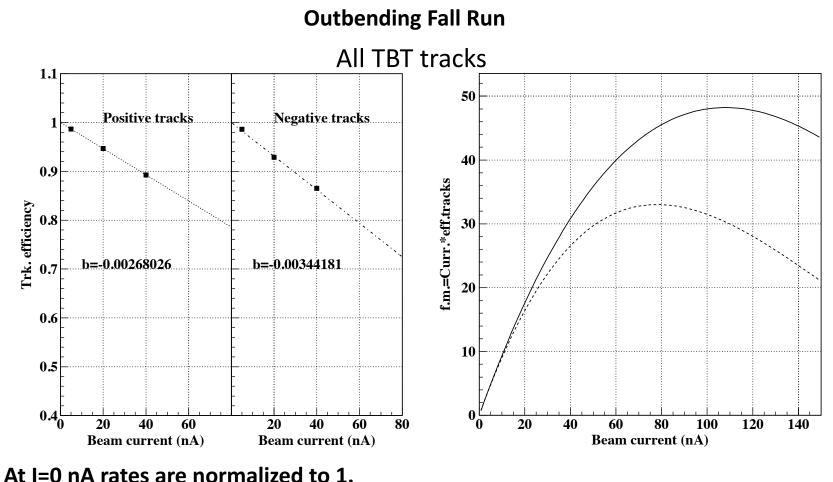
CLAS12 DAQ/Trigger in fall 2018 (cont.)

• Outbending: production rates at 40nA beam: 14kHz event rate, 330MB/sec data rate, LT=95%

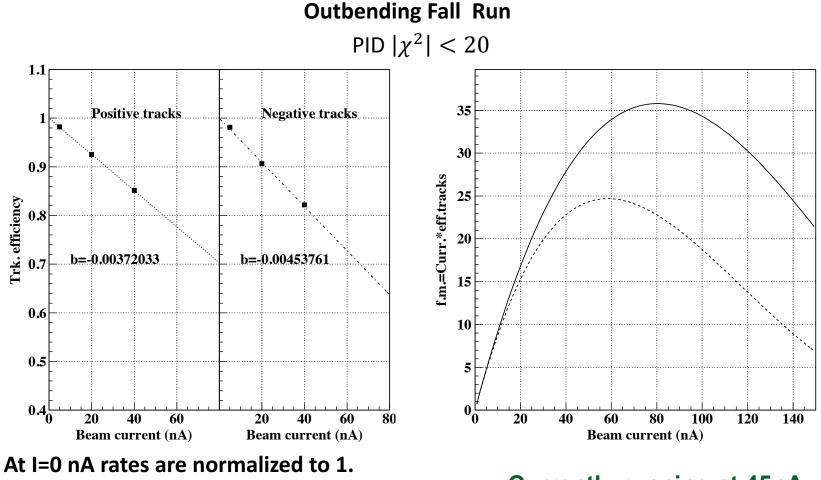
	, ,	С	S-Studio				
n 🔛	AS12 Trigger Bits 🔀 🔛 CLA	AS12 Trigger Alarr	ns			- 0	
м		VTP Trig	aaer	11/09/2018	1:29:28		
в		ron Alarms	55	Liveti	Livetime		
	40.2 2C21 1-6	NO_ALARM	1-6 Tolerance: 0		95.4 % 🔵		
	39.3 FCup	Totals (Hz)		Pulser	93.9 %		
		1917652	15592				
Bit	Description	Raw (Hz)	Prescaled (Hz)	Fraction (%)	Prescale	In Totals	
0	Electron - OR of 1-6		7593.1	48.70			
1		1148	1148.4				
2			1202.3				
з			1330.1				
4			1336.1				
5			1348.1				
6			1266.2				
7	Elctron OR no DC >300Me∨		245.5				
8	PCALxECAL>10Me∨		119.4				
13	DCxFTOFxPCUxPCAL S1		3.5				
14	DCxFTOFxPCUxPCAL S2	55134	3.4				
15	DCxFTOFxPCUxPCAL S3		3.5				
16	DCxFTOFxPCUxPCAL S4	56517	3.4				
17	DCxFTOFxPCUxPCAL S5	56810	3.5				
18	DCxFTOFxPCUxPCAL S6		3.5				
19	FTOF×PCAL×ECAL 1-4		817.8	5.25			
20	FTOFxPCALxECAL 2-5	714	714.0	4.58			
21	FTOFxPCALxECAL 3-6		739.9	4.75			
24	FTxHDxFTOFxPCALxCTOF	10855	329.0	2.11			
25	FTxHDx(FTOFxPCAL)^2		4336.8	27.81			
26		4911	148.8	0.95			
27	FT > 100 Me∨		71.7	0.46			
31			99.9	0.64			


* Note, red warning status indiciators above are to aid diagnostics and log information when there is a persistent DAQ/Trigger alarm. If there are no active DAQ/Trigger alarms, these red indicators can be disregarded.

Drift Chambers Setting and layer efficiency

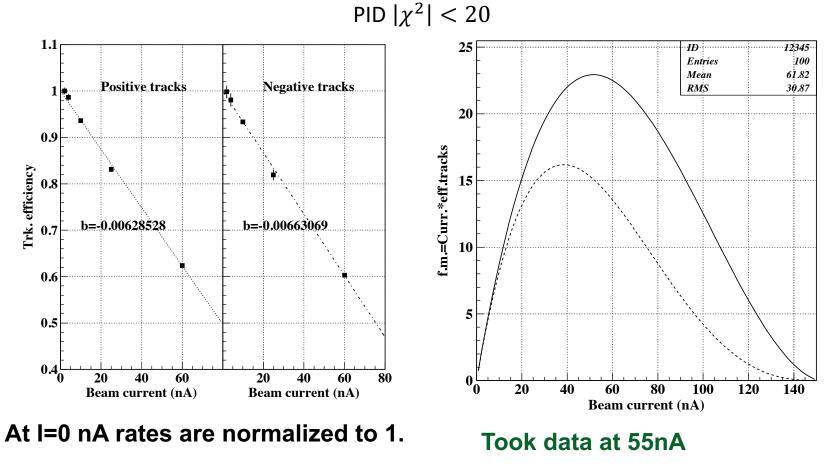


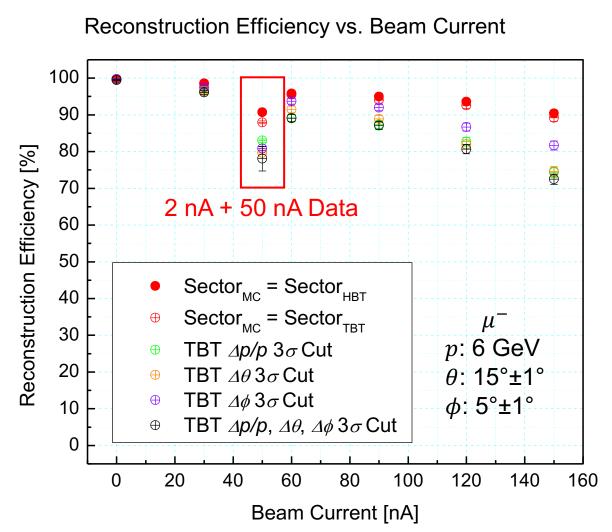
We choose the DC setting at which we have the maximum layer efficiency and No DC trips at the maximum operating current. Currently running at 9, 10, 10.



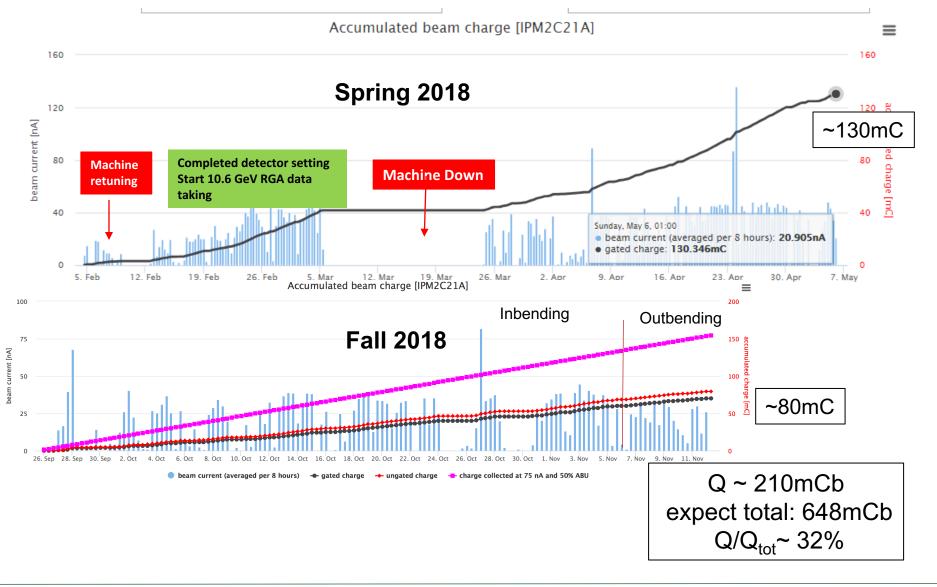
Currently running at 45nA


Currently running at 45nA

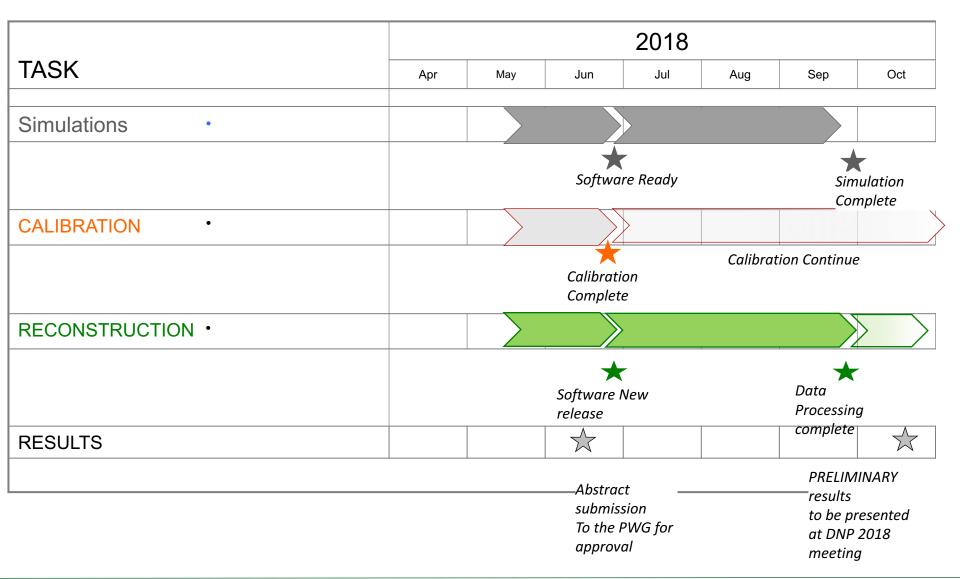

Inbending Fall Run


Inbending Fall Run

Efficiency vs. Beam Current another method

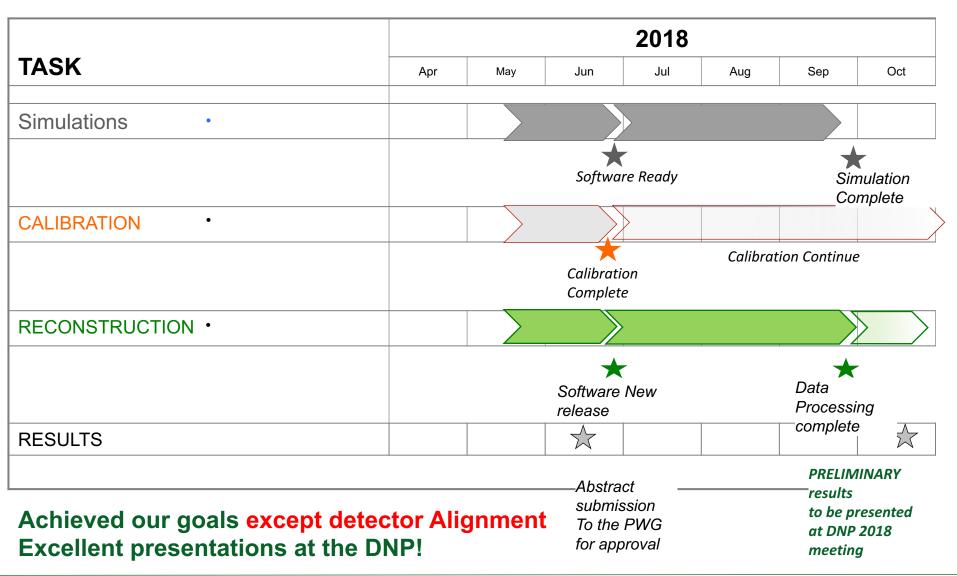

Being evaluated with latest tracking code and background in all detectors

RG-A Production Charge



Office of

Timeline in preparation for the DNP



Timeline in preparation for the DNP

CLAS12 First Experiment Calibration Status

Run	E _b (GeV)	I <na></na>	Torus	Solenoid	Run Range	Period
2052	10.6	5	-85%	-100%	1900-2090	Spring
2091	10.6	10	-85%	-100%	2091-2139	Spring
2193	10.6	10	100%	-100%	2140-2365	Spring
2391	2.2	5	100%	-100%	2366-2597	Spring
3050	6.4	15	-100%	-100%	3000-3096	Spring
3105	6.4	10	75%	-100%	3097-3130	Spring
3222	10.6	25	100%	-100%	3131-3293	Spring
3432	10.6	50	-100%	-100%	3304-3862	Spring
3842	6.4	20	100%	-100%	3819-3861	Spring
4013	10.6	50	-100%	-100%	3862-4325	Spring
5036	10.6	45	-100%	-100%	5015-inf	Fall

Skims Currently in Place for Analysis trains

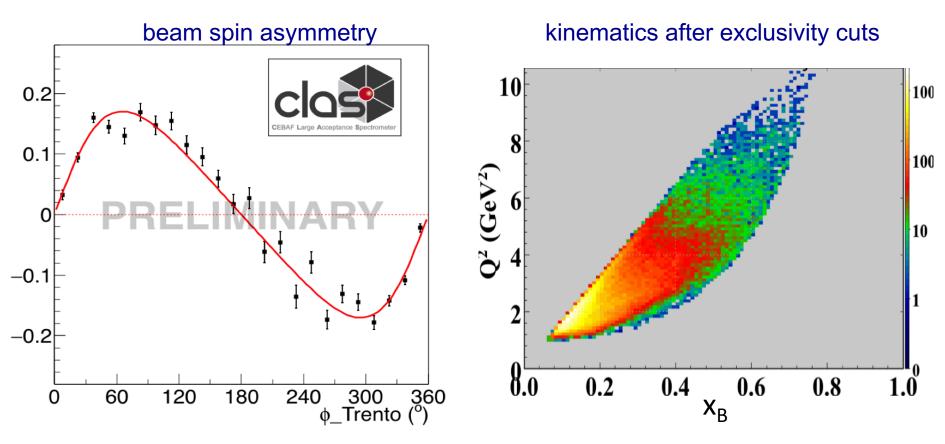
Skim #	Title	Description	Fraction*
Skim 1	$J/\psi/TCS$	Custom Wagon	0.0052
Skim 2	FT/π^0	$e^-\gamma\gamma~{ m in}~{ m FT}$	0.0078
Skim 3	MesonX/VS	e^{-} in FT + 2 charged tracks	0.5489
Skim 4	Inclusive	e^- in the Forward Detector	0.3187
Skim 8	$e^{-}\mathrm{P}$	e^- in FD Proton FD/Central	0.0874
Skim 9	p ar p	$p \bar{p} X$	0.0321

CLAS12 Contributed talk 5th Joint Meeting of the APS DNP and the Physical Society of Japan

Title	Author(s)	Topic(s)	File(s)	Length	Edit
J/Psi Photoproduction Near Threshold	Joseph Newton	Physics	dnp_jpsi_jnewton.pdf	00:15	<u>Edit</u>
Search for Hidden-Charm Pentaquark with CLAS12	<u>Valery Kubarovsky</u>	<u>Physics</u>	<u>kubarovsky_DNP.pdf</u>	00:15	<u>Edit</u>
First Studies of Exclusive Reactions in the Resonance Region with CLAS12	Stefan Diehl	Physics	Diehl_DNP_exclpdf	00:15	<u>Edit</u>
EE.00007: First Measurements of Inclusive Electron Scattering off Protons with CLAS12	Nick Markov	Physics	None	00:15	Edit
DNP di-hadron BSA talk and analysis note	Harut Avakian et al.	Physics	CLAS_Di_hadronpdf DNPTalk2018Vospdf	00:15	<u>Edit</u>
SIDIS Pion Beam Spin Asymmetries with CLAS12 at 10.6 GeV	Stefan Diehl	Physics	Diehl_DNP_SIDIpdf	00:15	<u>Edit</u>
Slides DNP Multiplicity pi0	Giovanni Angelini	Experiment	Slides Multiplicity	00:15	<u>Edit</u>
Exclusive <u>hphi</u> Meson Electroproduction with CLAS12	Brandon Clary	Physics	<u>clary_dmp_finapdf</u>	00:15	Edit
DVCS at 10.6 GeV with CLAS12 at Jefferson Lab for DNP	Guillaume Christiaens	<u>Physics</u> <u>Experiment</u>	DVCSwithCLAS12pdf	00:15	<u>Edit</u>
DVCS with JLab's CLAS12 at 6.4 GeV Polarized Electron Beam	Joshua Artem Tan	Physics	<u>main_file</u> <u>ppt_version</u>	00:15	<u>Edit</u>
TCS slides for DNP	Pierre Chatagnon	Physics	PresentationTCS.pdf	00:15	<u>Edit</u>

<u>Session CK</u>: Hadron Spectroscopy with Electron, Photon, and Hadron Beams I <u>Session EE</u>: Mini-symposium: Photoproduction and Electroproduction of Hadrons I <u>Session FE</u>: Mini-symposium: Photoproduction and Electroproduction of Hadrons II

All the talks are posted on the CLAS12 First Experiment

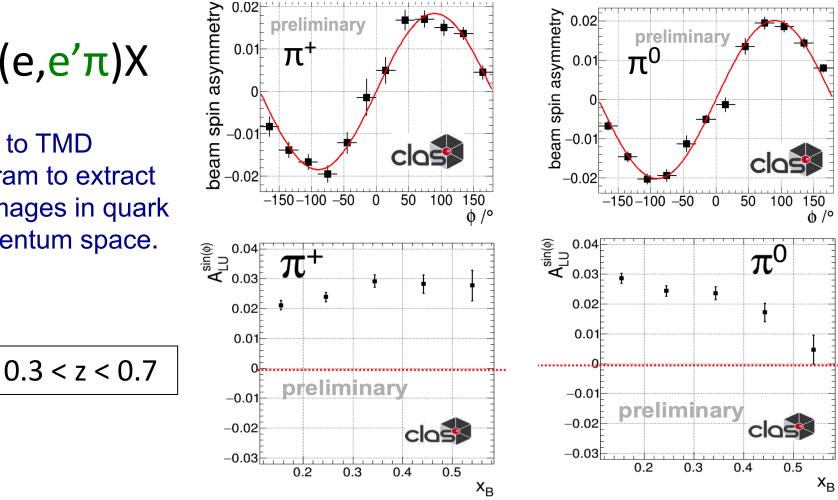


CLAS12 DVCS raw BSA

P_e=0.85

p(e,e'pγ)

At same kinematics BSA at 10.6 GeV consistent with 6 GeV data Preliminary data presented at DNP/JPS meeting in Hawaii 10/23-28

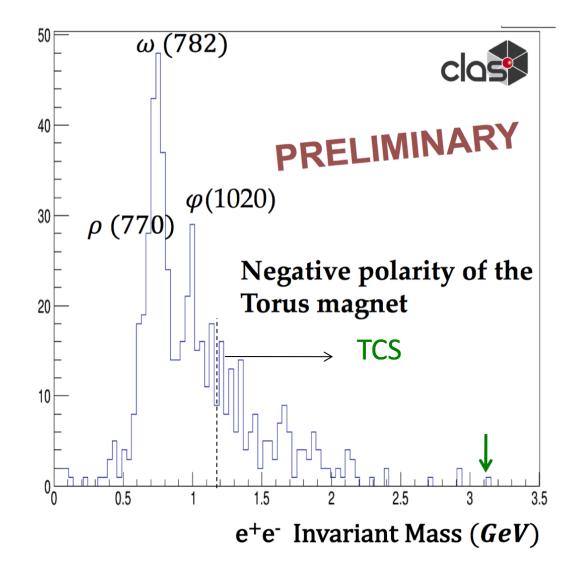


CLAS12 SIDIS raw BSA

Input to TMD program to extract 3D images in quark momentum space.

 $p(e,e'\pi)X$

Measure small asymmetries with precision => Enables binning in several kinematical quantities



CLAS12 Time-like Compton Scattering

$$ep \rightarrow e^+ e^- p'(e')$$

TCS complements DVCS as it enables direct access the real part of the Compton amplitude.

Narrow vector mesons (ω, ϕ) seen at right masses ... waiting for J/ ψ .

Remaining issues/Decisions

- CLAS12 geometry and alignment
- Understanding/quantifying detector efficiency
- Event reconstruction efficiency
- Tracking with the FMM ?
- RICH reconstruction and PID
- LTCC calibration
- Particle identification
- Documentation

Remaining issues/Decisions

- CLAS12 geometry and alignment
- Understanding/quantifying detector efficiency
- Event reconstruction efficiency
- Tracking with the FMM ?
- RICH reconstruction and PID
- LTCC calibration
- Particle identification
- Documentation

CLAS12 First Experiment Requirement

In addition to the detector complete new calibration and alignment, many experiments require absolute normalization, therefore we need to monitor and control as function of time:

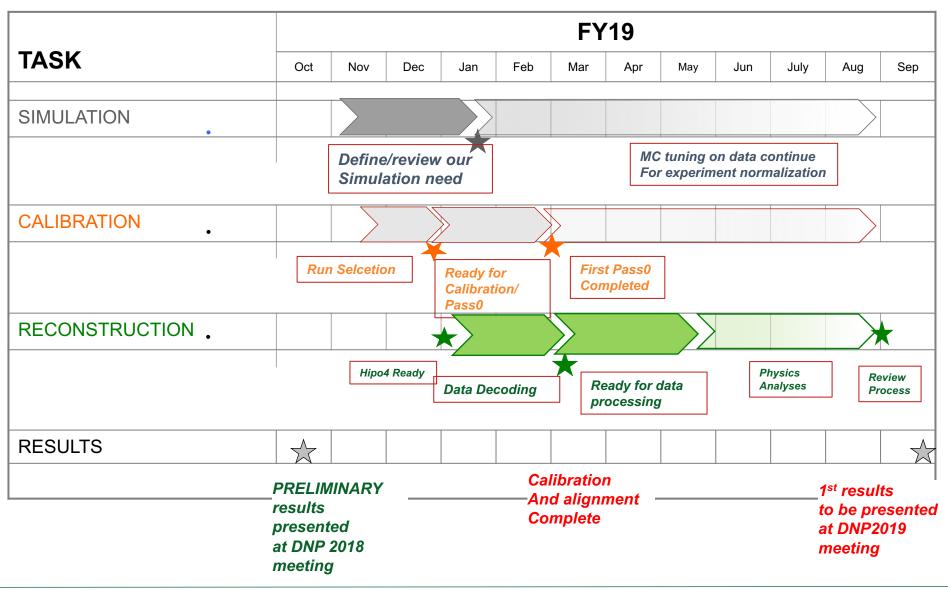
- Detector efficiency
- Event reconstruction efficiency as function of beam current
- Accumulated charge
- Target length and density
- Beam Polarization
- Acceptances
- Physics background contributing to the signal
- Realistic Monte Carlo Simulations
- Radiative corrections
- Others

All of this requires normalization validated with known cross-sections such as elastic, inclusive inelastic as has been done with CLAS

Office o

Towards Physics from Spring Run

- Validated release
- Calibration and alignment of CLAS12
- Magnetic Field
- · Calibration organization manpower and procedures
- Particle Identification
- Kinematical corrections
- Kinematical fitting
- Good run selection (develop method/procedure)
- Assign Chef for spring data
- Validation/monitoring procedures organization
- Data Processing/trains
- Disk space requirement
- Data analysis Hipo/root what information we should keep
- Tracking efficiency, methods and procedures
- CLAS12 efficiencies as function of time Detector and Trigger
- · Required simulations to understand/study detector performances
- · Required simulations for physics analysis
- Offsite simulation needs
- Detailed schedule with milestones towards physics from spring data and keeping up with the fall data and preparing for the next spring data
- Communication
- Documentation/Web page/Wiki



Office o

Schedule towards Releasing Physics Results

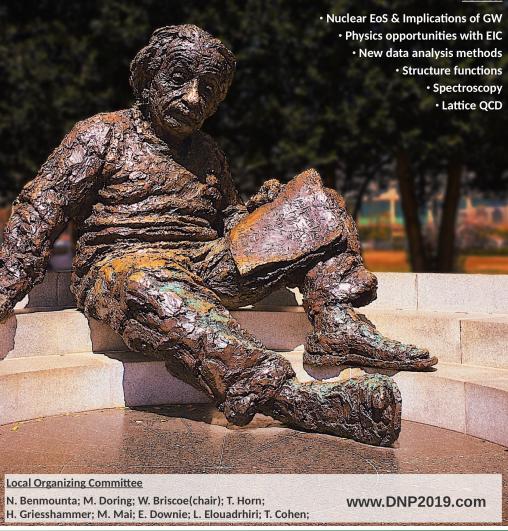
U.S. DEPARTMENT OF

Office of

Summary

- Excellent progress has been made on all fronts from online data taking to physics analysis:
 - -Full chain for all major physics processes
 - -Excellent presentations at the DNP meeting
- Now we need to re-define our work plan for next 10 months!
 - Focused effort on systematic studies in coordinated way
 - Parallel efforts, close coordination
 - Detailed schedule with milestones towards physics from spring data
 - Plan in place to keep up with the fall data calibration and preparing for the next spring data taking
- Need to start working with the theorist on high level analysis and physics extractions

TEAM WORK!



DNP 2019

Fall meeting of the Division of Nuclear Physics of the American Physical Society OCTOBER xx-xx, 2019 • Arlington (VA) • Crystal Gateway Marriott

TOPICS:

