Introducing $\pi_1(1400)$, $\pi_1(1600)$

- $\eta'(\pi)$ system with odd L gives $J^P C = (1, 3, \ldots)^{--}$, exotic ("non-$q\bar{q}$") quantum numbers.
- $\pi_1(1400)$ claimed in the $\eta\pi$ final state (E852, Crystal Barrel)
- $\pi_1(1600)$ claimed in the $\rho\pi$ and $\eta'\pi$ (E852, VES), different from $\pi_1(1400)$.
- COMPASS experiment
 - confirms a peak in $\rho\pi$ and $\eta'\pi$ at ~ 1.6 GeV,
 - observes an additional structure at around ~ 1.4 GeV.
- Two different states are considered in the PDG...

COMPASS, PL,B740,303('15)
\[\pi_1: \text{Introduction} \]

- \(J^{PC} = 1^{--} \) discards \(q\bar{q} \)
- \(l = 1 \) discards glueball.
- Molecular interpretation is very difficult.
- Tetraquark? Hybrid?
 - \(\pi_1(1600) \) is consistent with the expected lightest hybrid (1.7 – 1.9 GeV).
 - \(\pi_1(1400) \) could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...

We study COMPASS data \((\pi p \rightarrow \eta^{(')} \pi p)\) to shed some light into the \(\pi_1 \) puzzle
π₁: Introduction

- $J^{PC} = 1^{--}$ discards $q\bar{q}$
- $l = 1$ discards glueball.
- Molecular interpretation is very difficult.
- Tetraquark? Hybrid?
 - $\pi_1(1600)$ is consistent with the expected lightest hybrid ($1.7 - 1.9$ GeV).
 - $\pi_1(1400)$ could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...

We study COMPASS data ($\pi p \rightarrow \eta(\prime) \pi p$) to shed some light into the π_1 puzzle.
\(\pi_1: \) Introduction

- \(J^{PC} = 1^{--} \) discards \(q\bar{q} \)
- \(I = 1 \) discards glueball.
- Molecular interpretation is very difficult.
- Tetraquark? Hybrid?
 - \(\pi_1(1600) \) is consistent with the expected lightest hybrid (1.7 – 1.9 GeV).
 - \(\pi_1(1400) \) could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...

We study COMPASS data (\(\pi p \rightarrow \eta^{(*)} \pi p \)) to shed some light into the \(\pi_1 \) puzzle
\[J^{PC} = 1^{--} \] discards \(q\bar{q} \)

\(l = 1 \) discards glueball.

Molecular interpretation is very difficult.

Tetraquark? Hybrid?
- \(\pi_1(1600) \) is consistent with the expected lightest hybrid (1.7 – 1.9 GeV).
- \(\pi_1(1400) \) could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...
We study COMPASS data \((\pi p \to \eta^{(*)} \pi p)\) to shed some light into the \(\pi_1 \) puzzle.
\[J^{PC} = 1^{-+} \text{ discards } q\bar{q} \]

\[I = 1 \text{ discards glueball.} \]

Molecular interpretation is very difficult.

Tetraquark? Hybrid?

- $\pi_1(1600)$ is consistent with the expected lightest hybrid ($1.7 - 1.9 \text{ GeV}$).
- $\pi_1(1400)$ *could* be interpreted as a tetraquark, but this brings more problems than solutions.

In this work...

We study COMPASS data ($\pi p \rightarrow \eta^{(')} \pi p$) to shed some light into the π_1 puzzle
π_1: Introduction

- $J^{PC} = 1^{-+}$ discards $q\bar{q}$
- $I = 1$ discards glueball.
- **Molecular** interpretation is very difficult.
- **Tetraquark? Hybrid?**
 - $\pi_1(1600)$ is consistent with the expected lightest hybrid (1.7 – 1.9 GeV).
 - $\pi_1(1400)$ could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...

We study COMPASS data ($\pi p \rightarrow \eta^{(')} \pi p$) to shed some light into the π_1 puzzle
\(\pi_1: \text{Introduction} \)

- \(J^{PC} = 1^{-+} \) discards \(q\bar{q} \)
- \(I = 1 \) discards \text{glueball}.
- \text{Molecular} interpretation is very difficult.
- \text{Tetraquark? Hybrid?}
 - \(\pi_1 (1600) \) is consistent with the expected lightest hybrid (1.7 – 1.9 GeV).
 - \(\pi_1 (1400) \) could be interpreted as a tetraquark, but this brings more problems than solutions...

\textbf{In this work...}

We study COMPASS data \((\pi p \rightarrow \eta (\prime) \pi p) \) to shed some light into the \(\pi_1 \) puzzle.
π_1: Introduction

- $J^{PC} = 1^- +$ discards $q\bar{q}$
- $I = 1$ discards glueball.
- Molecular interpretation is very difficult.
- Tetraquark? Hybrid?
 - $\pi_1(1600)$ is consistent with the expected lightest hybrid (1.7 – 1.9 GeV).
 - $\pi_1(1400)$ could be interpreted as a tetraquark, but this brings more problems than solutions...

In this work...

We study COMPASS data ($\pi p \rightarrow \eta^{(')} \pi p$) to shed some light into the π_1 puzzle
The model

- COMPASS reaction $\pi p \to \eta^{(')} \pi p$ (190 GeV pion beam).
- Peripheral production dominated by Pomeron exchange (P).
- Effectively treated as a $P\pi \to \eta^{(')} \pi$ process ($t_1 \approx -0.1$ GeV2).
The model

- COMPASS reaction $\pi p \rightarrow \eta^{(')} p p$ (190 GeV pion beam).
- Peripheral production dominated by Pomeron exchange (P).
- Effectively treated as a $P\pi \rightarrow \eta^{(')} \pi$ process ($t_1 \simeq -0.1$ GeV2).
The model

A. Rodas et al. (JPAC), 1810.04171

- Production amplitudes parameterized with N/D method:

$$a^J_i(s) = q^{J-1}(s) p^J(s) \sum_k n^J_k(s) \left[D^{-1}_J(s) \right]_{ki} ,$$

- $\eta^{(r)}\pi$ FSI embedded into $D^J(s)$ matrix:

$$D^J(s) = K^{-1}_J(s) - \frac{s}{\pi} \int ds' \frac{\rho N_J(s')}{s'(s'-s)} ,$$

- $K_J(s)$ matrix standard parameterization:

$$\left[K^J(s) \right]_{ij} = \sum_R \frac{g^R_i g^R_j}{m^2_R - s} + c^J_{ij} + d^J_{ij} s \ (\ldots)$$
The model

Production amplitudes parameterized with N/D method:

$$a^J_i(s) = q^{J-1}(s)p^J(s) \sum n^J_k(s) \left[D^{-1}_{J}(s) \right]_{ki},$$

$\eta^{(i)}\pi$ FSI embedded into $D^J(s)$ matrix:

$$D^J(s) = K^{-1}_J(s) - \frac{s}{\pi} \int ds' \frac{\rho N_J(s')}{s'(s' - s)} ,$$

$K_J(s)$ matrix standard parameterization:

$$[K^J(s)]_{ij} = \sum_R \frac{g^R_i g^R_j}{m^2_R - s} + c^J_{ij} + d^J_{ij}s \quad (+ \cdots)$$
The model

\[\text{Im} \ a_J(s) = a_J(s) \rho(s) t_J(s) \]

- Production amplitudes parameterized with \(N/D \) method:
 \[a_i^J(s) = q^{J-1}(s)p^J(s) \sum_k n_k^J(s) \left[D_J^{-1}(s) \right]_{ki} , \]

- \(\eta^{(i)} \pi \) FSI embedded into \(D^J(s) \) matrix:
 \[D^J(s) = K_J^{-1}(s) - \frac{s}{\pi} \int ds' \frac{\rho N_J(s')}{s'(s' - s)} , \]

- \(K_J(s) \) matrix standard parameterization:
 \[\left[K^J(s) \right]_{ij} = \sum_R \frac{g_i^R g_j^R}{m^2_R - s} + c_{ij}^J + d_{ij}^J s \ (\cdots) \]
The fit: results

Our reference model/fit
- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{d.o.f.} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, \(\sim 200\) MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit

- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{\text{d.o.f.}} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit

- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{\text{d.o.f.}} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit

- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{\text{d.o.f.}} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit

- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{d.o.f.} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.

- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit

- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{d.o.f.} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit

- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{\text{d.o.f.}} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - both a_2 show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?
The fit: results

Our reference model/fit
- Two K-matrix poles for D-wave (two a_2 states?)
- One single K-matrix pole for P-wave (one π_1 state?)

- $\chi^2_{d.o.f.} = 1.3$
- D-wave amplitudes show two peaks: two a_2 states?
- P-wave amplitudes show also two peaks, ~ 200 MeV apart.
- They are commonly attributed to two different π_1 states.
- Important differences between P and D waves:
 - **both a_2** show up in one channel ($\eta\pi$).
 - $a_2(1320)$ is very narrow.
- P wave is different... How to know?

Go to the complex plane!
Spectroscopy

Pole Data

<table>
<thead>
<tr>
<th>Pole</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2(1300)$</td>
<td>1306.0(0.8)(1.3)</td>
<td>114.4(1.6)(0.0)</td>
</tr>
<tr>
<td>$a_2(1700)$</td>
<td>1722(15)(67)</td>
<td>247(17)(63)</td>
</tr>
<tr>
<td>π_1</td>
<td>1564(24)(86)</td>
<td>492(54)(102)</td>
</tr>
</tbody>
</table>

Conclusion

A single broad π_1 state (~ 1600 MeV) is able to reproduce both set ($\eta \pi$ and $\eta' \pi$) of data.
Spectroscopy

A. Rodas *et al.* (JPAC), 1810.04171

D-wave poles

<table>
<thead>
<tr>
<th>Pole</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2(1320)$</td>
<td>$1306.0(0.8)(1.3)$</td>
<td>$114.4(1.6)(0.0)$</td>
</tr>
<tr>
<td>$a_2(1700)$</td>
<td>$1722(15)(67)$</td>
<td>$247(17)(63)$</td>
</tr>
<tr>
<td>π_1</td>
<td>$1564(24)(86)$</td>
<td>$492(54)(102)$</td>
</tr>
</tbody>
</table>

P-wave poles

Q: Is it possible to find two poles?

A: Yes, but those fits:

1. do not improve the fit quality,
2. the second poles is very unstable/not constrained,
3. requires a peculiar behaviour of the phase above 1.8 GeV.

Conclusion

A single broad π_1 state (~ 1600 MeV) is able to reproduce both set ($\eta \pi$ and $\eta' \pi$) of data.
Correlations (inputs & outputs)

A. Rodas et al. (JPAC), 1810.04171
Correlations (inputs & outputs)

A. Rodas et al. (JPAC), 1810.04171
Correlations (inputs & outputs)

A. Rodas et al. (JPAC), 1810.04171
The masses and widths of π_1 and both a_2 states are mostly not correlated to the production mechanism parameters.
Impact on GlueX and CLAS12

MA, V. Mathieu et al. (JPAC), *in preparation*

- Moments $H(LM)$ techniques [e.g. Chung, PR,D56(’97)] have been developed and used for spinless/unpolarized beam.

- For polarized beams, the spin-density matrix elements $\rho_{\lambda\lambda'}$ have been used, for instance, for vector meson production [e.g. Schilling, Seyboth, Wolf, NP,B15(’70)].
Impact on GlueX and CLAS12

Moments $H(LM)$ techniques [e.g. Chung, PR,D56(’97)] have been developed and used for spinless/unpolarized beam.

For polarized beams, the spin-density matrix elements $\rho_{\lambda\lambda'}$ have been used, for instance, for vector meson production [e.g. Schilling, Seyboth, Wolf, NP,B15(’70)].

- To develop the necessary formalism to extract moments from the photoproduction of two pseudoscalar mesons with a polarized beam.
- Demonstrate with a simple model the usage of this generalization of the formalism.

Start from:

$$
\frac{d\sigma}{d\Omega} = I(\Omega, \Phi) = \sum_{\lambda, \lambda'} \sum_{\lambda_1, \lambda_2} T_{\lambda;\lambda_1,\lambda_2}(\Omega) \rho_{\lambda, \lambda'}(\Phi) T^*_{\lambda';\lambda_1,\lambda_2}(\Omega)
$$

And introduce polarized moments $H^\alpha(LM)$
Polarized moments: summary

- Introduce polarized intensities:
 \[I(\Omega, \Phi) = I^0(\Omega) + \bar{P}_\gamma(\Phi) \cdot \bar{I}(\Omega) . \]

- Decompose \(I^\alpha(\Omega) \) into moments \(H^\alpha(LM) \),
 \[I^\alpha(\Omega) = \sum_{L,M} \frac{2L + 1}{4\pi} H^\alpha(LM) D^{L*}_{M0}(\Omega) , \]
 \[H^\alpha(LM) = \int d\Omega \ I^\alpha(\Omega) \ D^L_{M0}(\Omega) . \]

MA, V. Mathieu et al. (JPAC), in preparation

- Expand \(T_{\lambda;\lambda_1,\lambda_2} \) in \(\eta\pi \) partial waves:
 \[T_{\lambda;\lambda_1,\lambda_2}(\Omega) = \sum_{\ell,m} T^{\ell m}_{\lambda;\lambda_1,\lambda_2} Y^m_{\ell}(\Omega) , \]

- SDME for arbitrary \(\ell, \ell' \):
 \[(\rho_\alpha)^{\ell \ell'}_{mm'} = \sum_{\lambda, \lambda', \lambda_1, \lambda_2} T^{\ell m}_{\lambda;\lambda_1,\lambda_2} \frac{\sigma_{\lambda \lambda'}}{2} T^{\ell' m'}_{\lambda';\lambda_1,\lambda_2} \]

- Express \(H^\alpha(LM) \) in terms of SDME:
 \[H^\alpha(LM) = \sum_{\ell, \ell', m, m'} \left(\frac{2\ell' + 1}{2\ell + 1} \right) \langle \ell'0, L0 | \ell0 \rangle \times \langle \ell' m', LM | \ell m \rangle (\rho_\alpha)^{\ell \ell'}_{mm'} \]
Predictions with a simple model

Simplifying assumptions:
- $\ell_{\text{max}} = 2$ in $\eta\pi$ system ($L_{\text{max}} = 4$ in $H(LM)$),
- $|\lambda - m| \leq 1$,
- Only positive naturality waves are included,
- Three resonances are included: $a_0(980)$, $\pi_1(1600)$, $a_2(1320)$.

\[
[\ell]_m^{(+)} = N_R \left(\delta_R \sqrt{-t} \right)^{|m-1|} \Delta_R(m_{\eta\pi}) P_V(s, t),
\]

\[
\Delta_R(m_{\eta\pi}) = \frac{x_R m_R \Gamma_R}{m_R^2 - m_{\eta\pi}^2 - i \Gamma_R},
\]

\[
P_V(s, t) = \Gamma (1 - \alpha_V(t)) \left(1 - e^{-i\pi \alpha(t)} \right) s^\alpha(t),
\]

MA, V. Mathieu et al. (JPAC), in preparation
Predictions with a simple model (II)

Beam asymmetry Σ:

$$\int d\Omega \ I(\Omega, \Phi) \equiv \sigma^0 (1 + P_\gamma \Sigma \cos(2\Phi))$$

Equivalently,

$$\Sigma = -\frac{H^1(00)}{H^0(00)} = -\frac{\int d(\Omega) \ I^1(\Omega)}{\int d(\Omega) I^0(\Omega)}$$

$$= \frac{1}{P_\gamma} \frac{\int d(\Omega) \ (I(\Omega,\pi/2) - I(\Omega,0))}{\int d(\Omega) \ (I(\Omega,\pi/2) + I(\Omega,0))}$$
Predictions with a simple model (II)

Beam asymmetry Σ:

$$\int d\Omega \, I(\Omega, \Phi) \equiv \sigma^0 (1 + P_\gamma \Sigma \cos(2\Phi))$$

Equivalently,

$$\Sigma = -\frac{H^1(00)}{H^0(00)} = -\frac{\int d(\Omega) \, I^1(\Omega)}{\int d(\Omega) I^0(\Omega)}$$

$$= \frac{1}{P_\gamma} \frac{\int d(\Omega) \, (I(\Omega, \pi/2) - I(\Omega, 0))}{\int d(\Omega) \, (I(\Omega, \pi/2) + I(\Omega, 0))}$$

MA, V. Mathieu et al. (JPAC), in preparation
Predictions with a simple model (II)

Beam asymmetry Σ:

$$\int d\Omega \, I(\Omega, \Phi) \equiv \sigma^0 (1 + P_\gamma \Sigma \cos(2\Phi))$$

Equivalently,

$$\Sigma = -\frac{H^1(00)}{H^0(00)} = -\frac{\int d(\Omega) \, I^1(\Omega)}{\int d(\Omega) I^0(\Omega)}$$

$$= \frac{1}{P_\gamma} \frac{\int d(\Omega) \, (I(\Omega, \pi/2) - I(\Omega, 0))}{\int d(\Omega) \, (I(\Omega, \pi/2) + I(\Omega, 0))}$$
Predictions with a simple model (II)

Beam asymmetry Σ:

$$
\int d\Omega \ I(\Omega, \Phi) \equiv \sigma^0 (1 + P_\gamma \Sigma \cos(2\Phi))
$$

Equivalently,

$$
\Sigma = - \frac{H^1(00)}{H^0(00)} = - \frac{\int d(\Omega) \ I^1(\Omega)}{\int d(\Omega) I^0(\Omega)}
\quad = \frac{1}{P_\gamma} \frac{\int d(\Omega) \ (I(\Omega, \pi/2) - I(\Omega, 0))}{\int d(\Omega) (I(\Omega, \pi/2) + I(\Omega, 0))}
$$

M. Albaladejo (JLab): JPAC update November 15, 2018
CLAS Collaboration Meeting
Summary

- We have shown that a single π_1 state is able to describe the $\eta(\nu)\pi$ lineshape in $\pi p \rightarrow \eta(\nu)\pi p$ data by COMPASS. We find no evidence for two separate states [$\pi_1(1400)$ and $\pi_1(1600)$].

 A. Rodas et al. (JPAC), 1810.04171

- We are currently working in the formalism of polarized moments $H^\alpha(LM)$ for the production of $\eta\pi$ with polarized photon beam (GlueX, CLAS).

 MA, V. Mathieu et al. (JPAC), in preparation

- We are also working in many other projects: KT equations for $\pi\pi$ FSI and crossing in processes $X \rightarrow 3\pi$, 3 body unitarity, ...

- Suggestions of projects to work in are welcome!