TMDGen for SIDIS

Timothy B. Hayward

CLAS Collaboration Meeting November 15, 2018

CHARTERED 1693

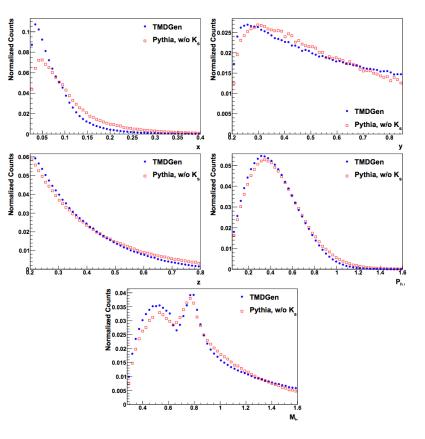
TMDGen

- Monte Carlo event generator developed by Stephen Gliske (HERMES).
- SIDIS single and dihadron processes (dedicated generator).
- Full angular dependence (pythia does not have this), object oriented, root output. "Easily extendable."

Models

Distribution Functions	Model Identifier
f_1	CTEQ [74]
f_1	LHAPDF [75]
f_1	BCR08 [76]
f_1	GRV98 [77]
g_1	GRSV2000 [78]
$f_{1T},h_{1T}^{\perp},h_{1}$	Torino Group [79, 80, 81, 82, 83]
$f_1,g_1,g_{1L},g_{1T},f_{1T},h_1,h_1^{\perp},h_{1T}^{\perp}$	Pavia Spectator Model [31]

- Many distribution and fragmentation function models are already included.
- Full packaged within TMDGen.


Table 3.1: Models of distribution function available in TMDGen.

Frag. Functions	Final State	Model Identifier
D_1	pseudo-scalar	fDSS [84, 85]
D_1	pseudo-scalar	Kretzer [86]
D_1, H_1^\perp	dihadron	Spectator Model (Section 2.4)
D_1, H_1^\perp	dihadron	Set given partial wave proportional
		to any other partial wave

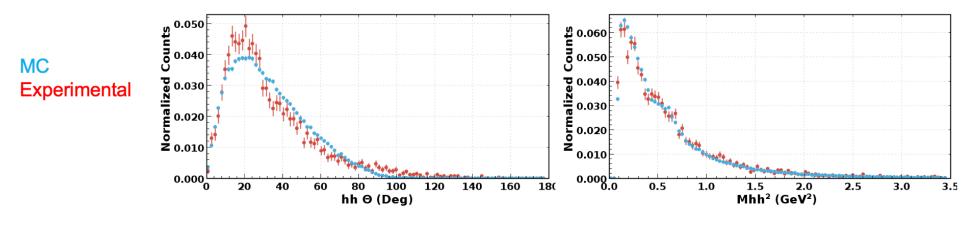
Table 3.2: Models of fragmentation function available in TMDGen.

Pythia vs TMDGen

• Gliske comparisons between Pythia and TMDGen for $e'\pi^+\pi^-X$.

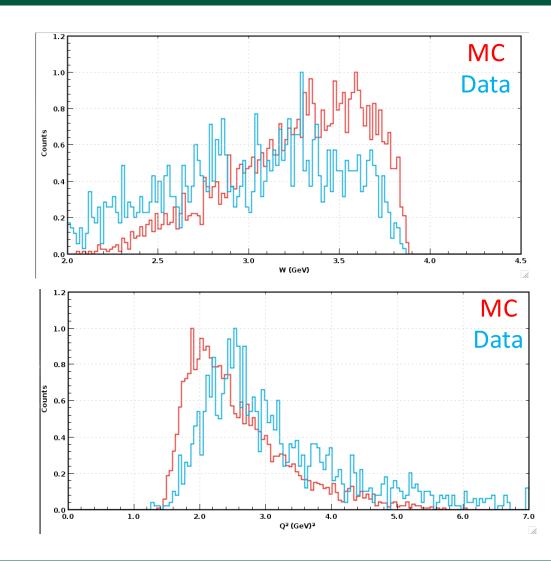
Instruction Files

- Simple text instruction file.
- Allows for specification of particles, polarizations and models.

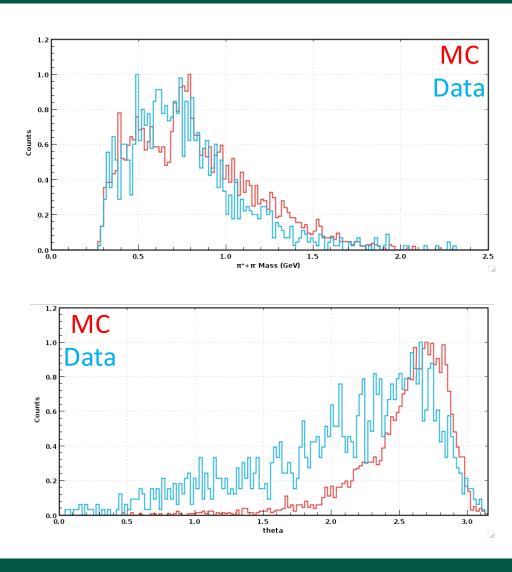

<pre># Comments can be inserted by either beginning the line with a '#' # Or placed after a '!' # Whitespace within a line is ignored, as are blank lines</pre>				
<pre># Basic process information</pre>				
Process Final_State Beam_Pol Target_Pol Twist Hadron_1_PID Hadron_2_PID	Dihadron ! Cur U	<pre>! Only SIDIS so far, later could have other options rent options are 'Single Hadron' or 'Dihadron' ! options are U, T, L (but not everything is programmed ! options are U, T, L (but not everything is programmed yet) ! ! options are pi+, pi-, pi0, K+, K ! options are pi+, pi-, pi0, K+, K-</pre>		
BOOTCAMP				
f1 f1_pT Re_D1_00 D1 #D1_kT	GRV98 Exp Torino 0.18 Spec_Ia fDSS 0 /group/gp Exp Torino 0.25	l d Labard 40 63 68 ambbe d/sidis/pasquale/grids		

Polarization

- Polarized beam and target cross sections coded for single hadron case.
- Only longitudinally polarized target cross section coded for dihadron.
- Long term goal is to (probably) incorporate the polarized beam cross sections in an extension of the generator.


Incipient Data Analysis

- Chose run 3222 (25 nA, 10.6 GeV, torus +1.00, solenoid -1.00) cooked with coatjava 5b.3.3
- Used EventBuilder REC::Particle to find e' pi+ pi- X events
- **Only** cut applied is $Q^2 > 1.0 \text{ GeV}^2$.



CLAS12 First Experiment Analysis Review

- Pre-DNP results with updated PID
 - e' momentum > 2.25 GeV,
 - Q2 > 1 GeV2
 - W > 2 GeV
 - EC and DC fiducial cuts

- Pre-DNP results with updated PID
 - e' momentum > 2.25 GeV,
 - Q2 > 1 GeV2
 - W > 2 GeV
 - EC and DC fiducial cuts

Conclusions

- Use of TMDGen is in very early stages.
- Just one of many possible and available generators.
- Needs significant study.