ERL parameters for strong hadron cooling in an Electron-Ion Collider

In September 2018 the National Academy of Sciences reported "An Assessment of U.S.-Based Electron-Ion Collider Science" in answer to a commission by the Department of Energy [1]. Page 54 states that: "To attain the highest luminosities demanded by the science, cooling of the hadron beam is essential. Energy recovery linacs (ERLs), a special type of recirculating linac, presently offer the only credible concept for electron cooling of high-energy, colliding beams."

Nominal ERL parameters necessary for strong hadron cooling in eRHIC and JLEIC are listed in Table 1, along with *design* parameters of contemporary test facilities.

		eRHIC	JLEIC			ER@	
Parameter	Units	MBEC PCA	ERL CCR	CBETA	cERL	CEBAF	LERF
		[2]	[3]	[4]	[5]	[6]	[7]
Number of passes		3	1 11	4	1	5	1
Top energy	MeV	149.8	110	150	20	7,000	135
Average current, 1 beam	mA	110	140 1,520	40	100	0.1	8.5
Total current, all beams	mA	660	140 –	320	200	1	17
RMS bunch length	mm	4 - 20 1.2	20	1.0	0.6	0.15	1
RMS energy spread	10^{-4}	1 3	< 3				5
RF frequency	MHz	563	476 -	1300	1300	1497	1497
Bunch frequency	MHz	112.6	43.3 476	41.9	1300	249.5	75
Electron bunch charge	pC	1,000	3,200	123	77	0.2	135
Normalized emittance	$\mu \mathrm{m}$	1 - 2 4	36	2	> 1.3		15

Table 1: Nominal high level parameters of an ERL required for strong hadron cooling in an Electron-Ion Collider, compared with the design parameters of contemporary test facilities.

References

- An Assessment of U.S.-Based Electron-Ion Collider Science, National Academy of Sciences report NAS-25171, (2018), https://www.nap.edu/download/25171#.
- [2] eRHIC Pre-Conceptual Design Report, e.g. Tables 3.57 and 3.60, (2018), unpublished. PCA : Plasma Cascade Amplification. MBEC: Microbunch Electron Cooling.
- [3] S. Benson & C. Tennant, private communication (2018). Total length of the JLEIC top hat is 20 mm. The drift and Larmor emittances are 36 μ m and < 19 μ m. CCR: Circulating Cooling Ring.
- [4] CBETA Design Report, (2017), https://www.classe.cornell.edu/CBETA_PM/notes/CBETA_Design_Report-2017-06-08_large.pdf .
- [5] T. Miyajima, private communication, (2018).
- [6] S.A. Bogacz et al., ER@CEBAF: A Test of 5-Pass Energy Recovery at CEBAF, (2016), http://www.toddsatogata.net/Papers/2016-ErPacProposal.pdf .
- [7] S. Benson, An Overview of the Low Energy Recirculation Facility, (2018), unpublished.