

What are we building: The simplest case

Arrows represent logical data streams, not necessarily physical
connections.

What are we building: The simplest case
Detector

Arrows represent logical data streams, not necessarily physical
connections.

What are we building: let's do more

Detector 1

/

O

\

Detector 2

Detector 3

Arrows represent logical data streams, not necessarily physical
connections.

What are we building: let's do more

Detector 1

)

’

Detector 2 Aggregator

Detector 3

K

Arrows represent logical data streams, not necessarily physical
connections.

Need to send data at the same time. This essentially rules out
Circuit switching. We want a packet network.

What are we building: let's do more

Detector 1

¥
!

Detector 3

Arrows represent logical data streams, not necessarily physical
connections.

Need to send data at the same time. This essentially rules out
Circuit switching. We want a packet network.

Let's look at that aggregator

Takes N data streams in, multiplexes them to 1 output stream:
Each input stream i has time-ordered data words, (tp.do);,

(tl.dl),',...
Two possibilities:

o Full time-ordered output: tx < txy1

_

Let's look at that aggregator

Takes N data streams in, multiplexes them to 1 output stream:
Each input stream i has time-ordered data words, (tp.do);,

(tl.dl),',...
Two possibilities:

o Full time-ordered output: tx < txy1
o Frame-ordered. Pick time buckets of duration T, then

o copy all data from channel 1 where nT <t < (n+1)T,
o copy all data from channel 2 where ...

_

Multiplexer

Fully time ordered:
o Computational expensive on the multiplexer
o Consumer has advantage if looking at many channels and
interesting time spans < T
Frame-ordered:

o Computational less expensive on the multiplexer, mainly
straight copies

o Consumer has advantag if looking at few channels (skip
ahead), or time spans 2 T

o Worse case: Complexity moved from multiplexer to consumer

The aggregator:
o consumes N input streams
o does something
o produces 1 output stream
Let's generalize:
A filter:
o consumes N input streams
o does something
o produces M output streams

o Sources / Producers: 0 inputs, M outputs
o Detectors
o Slow control info
o Replayed data
o Sinks/Consumers: N inputs, 0 outputs
o long term storage
o displays
o Filters: N inputs, M outputs
o Aggregators
o Event builder
o (online) trackers
o Data selectors

o With these three concepts, we can build a network describing
any streaming readout solution.

o The physical readout network will resemble this network.

o For composition: Good if off-device physical interface is "the
same’.

o It makes sense that the analysis software, online and offline, is
organized the same way.

Open Systems Interconnection layers

Application
Presentation
Session

Transport

Physical

e End User layer
® HTTP, FTP, IRC, SSH, DNS

¢ Syntax layer
e SSL, SSH, IMAP, FTP, MPEG, JPEG

e Synch & send to port
e API’s, Sockets, WinSock

¢ End-to-end connections
e TCP, UDP

¢ Packets
¢ |P, ICMP, IPSec, IGMP

e Frames
e Ethernet, PPP, Switch, Bridge

e Physical structure
e Coax, Fiber, Wireless, Hubs, Repeaters

1) Physical

o Will have multiple solutions
o Some of them might be on-chip!

o Think multi-channel streaming ADC. Each channel will be
a produce, and there is a on-fpga mixer.

o Local area: Probably what ethernet can use, because next layer

2) Data Link

©

©

o

©

Will have multiple solutions.

On-chip: Wishbone, AXI ...

Likely with data frames, but doesn’t have to be.
Hardware addresses

Local area:

o Ethernet

o Roll-your-own
o ATM, Frame Relay

Opinion 2: Why Ethernet

o Ethernet is dirt cheap.

o IP available.

o Don't have to design infrastructure. Switches are cheap.
o All computers have an ethernet interface.

o Backward- and forward compatible. Better than PCle, better
than USB.

o Slow control back channel for free.
o Some more overhead, wasted bandwidth.

o | don't think we can get time synchronization to the level we
need

3) Network

o Packet routing between segments

(%)

Logical addresses
o Easy to provision/replace hardware

©

Could be skipped for higher efficiency

o

Essentially two options:

o IP
o Roll your own

Opinion 3: Why IP

©

Allow WAN type of networking. Stream data to data center.

©

Need some form to jump from ethernet segment to segment.

SOO much hardware and software exists.

©

(%)

Does give addition overhead, wasted bandwidth.

4) Transport

o On a packet network, two options

o Connection-oriented protocols: TCP
o Connection-less protocols: UDP

o But RTP, QUIC=http/3 uses UDP to create
connection-oriented protocol.

Open question: TCP or UDP

o Layers below do NOT guarantee in-order delivery. Might drop
packages!
o UDP will pass this onward. UDP can boardcast/multicast

o TCP guarantees in-order delivery, no loss
o Will request resend of packages which are not received in
time
o This means source needs memory to preserve already sent
data

Open question: TCP or UDP

o Layers below do NOT guarantee in-order delivery. Might drop
packages!

o UDP will pass this onward. UDP can boardcast/multicast
o TCP guarantees in-order delivery, no loss

o Will request resend of packages which are not received in
time

o This means source needs memory to preserve already sent
data

o My gut feeling: TCP probably worth it.

o Most alternative implementations of layer 1-4 are fiber-optical
serial links.

5) Session

Standard: Socket API
Also: User-space network stacks!

o If we stay with the usual net stack, all is provided.

o If not, merge with upper layers?

6) Presentation Layer

This is where the software people will work on!
o Define representation of data in structures instead of
datagrams
o (De)-Serialization of data
o If we do it right, mostly independent of layers 1-5

o See below

7) Application layer

This is not the application!
o Actual protocol spoken between network partners
o Think HTTP, DNS etc..

How bad is the overhead, really?

Data Application
UDE | UDP Transport
header| data

IP

header IP data Internet

Frame Frame .
F dat
header [ame data footer Link

Overhead in numbers

o Standard Ethernet frame size: 1538 octets (=bytes), up to
1500 bytes data: 97.5% efficiency

o Jumbo frames up to 9000 bytes payload, so 99.54% efficiency

o IPv4 header 20 bytes, IPv6: 40 Bytes: Worst case 94.9%
efficiency

o UDP header: 8 Bytes. 94.4% efficiency. TCP header: 20
Bytes. 93.6% efficiency

o Is a custom solution less than 7% more expensive?

Alternatives to TCP and UDP

o Can not realistically go "below” UDP. No software support in
Os.

o But TCP provides things we might not need:
o Ordered data + we need that, but also true for UDP and
simple networks
o Reliable transmission <— we might not need that
o Congestion control < probably not what we need

o Might be able to push what we need into application layer.
Easier on FPGA

Scaling of Ethernet

1000Base-T Ethernet is standard. 125 MByte/s
o Virtually all computers, FPGAs....
10GBase-XX is commonly available COTS. 1.25 GByte/s
o Copper: Switch port ~$50, network card ~$100
o Available in all bigger FPGAs
40GbE. 5 GByte/s
o 32 port switch for ~1000%, network card ~$150
o Cables expensive, short :)
o Available in latest gen FPGAs
o 100GbE, 12.5 GByte/s

o switch $200/port, network card ~$500
o That's ~4 Bytes/cycle on a modern CPU.

©

o

©

Side note: Data storage

HDD vs. Flash SSD $/TB Annual Takedown Trend

- MAMR

100000 SLC
2008-10
-63% $/TB

MLC
2010-16
-38% $/TB

Supply
Constraint

TLC + 3D
2017-22
-20% $/TB

Supply
Constraint
PMR
2008-11

-30% $/TB He/Damascene

2013-20
-18% $/TB

will enable continued $/TB advantage over Flash SSDs

QLC
202228
-16% $/TB

MAMR
2020-28

-15% $/TB

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

Calendar Year
. Western Digital

Looks like $8/TByte. Let's assume $20/TByte

Let's assume 1 mio$/year. That's 50 PByte/year, 136 TByte/day,
or 1.6 GByte/s.

‘Source: WDC Analysis

o Software stack

o Highest level gets data on frame level

o Next lowest level should assume FIFO semantics

o Plugable support for TCP, UDP etc. Start with TCP
o Network mostly based on ethernet, IP

o Can use DHCP, BOOTP etc for bring-up!

Wish list for Application Layer

o Need to organize which source connects to which sink.
o Round-Robin or job request for load-balancing?

o Send data to more than one node, for selected T-bins, for
monitoring

o Diagnose flow limits, dead time etc

Wish list for Presentation Layer

(%)

Efficient implementation on CPU and FPGA

Easy to add/drop substreams, parts of streams.

©

o

Must decode enough without configuration

©

Empty channels need 0 bytes
o Flexible for wide range of data types
o Self-documenting

o Bindings to many languages

A look at MPEG/DVB/ATSC

o Digital video broadcast is a stream of multiple channels, video
and audio, time-synchronized

o Widely distributed, IP available?

A look at MPEG/DVB/ATSC

o Digital video broadcast is a stream of multiple channels, video
and audio, time-synchronized
o Widely distributed, IP available?Only some.
o Three types of streams:
o Transport streamProgram clock reference

o Program stream
o Packetized elementary stream

MPEG Transport stream

Combines a number of substreams, mostly packetized
elementary streams

©

Sequence of packets, 188 bytes long

o

Each packet has data from one substream

(%)

©

Not every packet has timing information.

o

Interesting fields/items
o Random Access indicator: Data from here on "makes
sense”
o Priority fields. Out-of-band data?
o Contains multiple programs (group of PES) which can
have different time base
o Always has length field.

Program Stream

o Similar to TS
o Designed for "Reasonably reliable media”. Less protection
against data loss.
o Only one time base

Packetized elementary stream

o Packetized version of an elementary stream

o Can be of any length (for video)

Features present?

o Efficient implementation on CPU and FPGA

o Easy to add/drop substreams, parts of streams.
o Must decode enough without configuration

o Empty channels need 0 bytes

o Flexible for wide range of data types

o Self-documenting

o Bindings to many languages

o Protocol itself not suitable for us

o But some ideas interesting:
o PES packets don't need to match TS packets
o Does "different time bases” help us?
o Sync words to find headers in stream

