
Intermediate Network

Jan C. Bernauer

EIC Streaming Readout Meeting Dec 2018

What are we building: The simplest case

Detector Tape

Slow Control

Arrows represent logical data streams, not necessarily physical
connections.

2

What are we building: The simplest case

Detector Tape

Slow Control

Arrows represent logical data streams, not necessarily physical
connections.

3

What are we building: let’s do more

Detector 1

Detector 2

Detector 3

Tape

AggregatorAggregator

Arrows represent logical data streams, not necessarily physical
connections.

Need to send data at the same time. This essentially rules out
Circuit switching. We want a packet network.

4

What are we building: let’s do more

Detector 1

Detector 2

Detector 3

TapeAggregator

Aggregator

Arrows represent logical data streams, not necessarily physical
connections.
Need to send data at the same time. This essentially rules out
Circuit switching. We want a packet network.

5

What are we building: let’s do more

Detector 1

Detector 2

Detector 3

Tape

Aggregator

Aggregator

Arrows represent logical data streams, not necessarily physical
connections.
Need to send data at the same time. This essentially rules out
Circuit switching. We want a packet network.

6

Let’s look at that aggregator

Takes N data streams in, multiplexes them to 1 output stream:
Each input stream i has time-ordered data words, (t0.d0)i ,
(t1.d1)i ,...
Two possibilities:

Full time-ordered output: tk < tk+1

Frame-ordered. Pick time buckets of duration T, then
copy all data from channel 1 where nT ≤ t < (n + 1)T ,
copy all data from channel 2 where ...

1 3 4 7 9 10

2 3 5 6 7 10
1 2 3 4 5 6 7 7 9 10 10

1 3 4 7 9 10

2 3 5 6 7 10
1 3 2 3 4 5 6 7 9 7 10 10

7

Let’s look at that aggregator

Takes N data streams in, multiplexes them to 1 output stream:
Each input stream i has time-ordered data words, (t0.d0)i ,
(t1.d1)i ,...
Two possibilities:

Full time-ordered output: tk < tk+1

Frame-ordered. Pick time buckets of duration T, then
copy all data from channel 1 where nT ≤ t < (n + 1)T ,
copy all data from channel 2 where ...

1 3 4 7 9 10

2 3 5 6 7 10
1 2 3 4 5 6 7 7 9 10 10

1 3 4 7 9 10

2 3 5 6 7 10
1 3 2 3 4 5 6 7 9 7 10 10

8

Multiplexer

Fully time ordered:
Computational expensive on the multiplexer
Consumer has advantage if looking at many channels and
interesting time spans � T

Frame-ordered:
Computational less expensive on the multiplexer, mainly
straight copies
Consumer has advantag if looking at few channels (skip
ahead), or time spans & T

Worse case: Complexity moved from multiplexer to consumer

9

Filters

The aggregator:
consumes N input streams
does something
produces 1 output stream

Let’s generalize:
A filter:

consumes N input streams
does something
produces M output streams

10

Concepts

Sources / Producers: 0 inputs, M outputs
Detectors
Slow control info
Replayed data

Sinks/Consumers: N inputs, 0 outputs
long term storage
displays

Filters: N inputs, M outputs
Aggregators
Event builder
(online) trackers
Data selectors

11

Opinion 1

With these three concepts, we can build a network describing
any streaming readout solution.
The physical readout network will resemble this network.
For composition: Good if off-device physical interface is ”the
same”.
It makes sense that the analysis software, online and offline, is
organized the same way.

12

Open Systems Interconnection layers

13

1) Physical

Will have multiple solutions
Some of them might be on-chip!

Think multi-channel streaming ADC. Each channel will be
a produce, and there is a on-fpga mixer.

Local area: Probably what ethernet can use, because next layer

14

2) Data Link

Will have multiple solutions.
On-chip: Wishbone, AXI ...
Likely with data frames, but doesn’t have to be.
Hardware addresses
Local area:

Ethernet
Roll-your-own
ATM, Frame Relay

15

Opinion 2: Why Ethernet

Ethernet is dirt cheap.
IP available.
Don’t have to design infrastructure. Switches are cheap.
All computers have an ethernet interface.
Backward- and forward compatible. Better than PCIe, better
than USB.
Slow control back channel for free.
Some more overhead, wasted bandwidth.
I don’t think we can get time synchronization to the level we
need

16

3) Network

Packet routing between segments
Logical addresses

Easy to provision/replace hardware
Could be skipped for higher efficiency
Essentially two options:

IP
Roll your own

17

Opinion 3: Why IP

Allow WAN type of networking. Stream data to data center.
Need some form to jump from ethernet segment to segment.
SOO much hardware and software exists.
Does give addition overhead, wasted bandwidth.

18

4) Transport

On a packet network, two options
Connection-oriented protocols: TCP
Connection-less protocols: UDP

But RTP, QUIC=http/3 uses UDP to create
connection-oriented protocol.

19

Open question: TCP or UDP

Layers below do NOT guarantee in-order delivery. Might drop
packages!
UDP will pass this onward. UDP can boardcast/multicast
TCP guarantees in-order delivery, no loss

Will request resend of packages which are not received in
time
This means source needs memory to preserve already sent
data

My gut feeling: TCP probably worth it.
Most alternative implementations of layer 1-4 are fiber-optical
serial links.

20

Open question: TCP or UDP

Layers below do NOT guarantee in-order delivery. Might drop
packages!
UDP will pass this onward. UDP can boardcast/multicast
TCP guarantees in-order delivery, no loss

Will request resend of packages which are not received in
time
This means source needs memory to preserve already sent
data

My gut feeling: TCP probably worth it.
Most alternative implementations of layer 1-4 are fiber-optical
serial links.

21

5) Session

Standard: Socket API
Also: User-space network stacks!

If we stay with the usual net stack, all is provided.
If not, merge with upper layers?

22

6) Presentation Layer

This is where the software people will work on!
Define representation of data in structures instead of
datagrams
(De)-Serialization of data
If we do it right, mostly independent of layers 1-5
See below

23

7) Application layer

This is not the application!
Actual protocol spoken between network partners
Think HTTP, DNS etc..

24

How bad is the overhead, really?

25

Overhead in numbers

Standard Ethernet frame size: 1538 octets (=bytes), up to
1500 bytes data: 97.5% efficiency
Jumbo frames up to 9000 bytes payload, so 99.54% efficiency
IPv4 header 20 bytes, IPv6: 40 Bytes: Worst case 94.9%
efficiency
UDP header: 8 Bytes. 94.4% efficiency. TCP header: 20
Bytes. 93.6% efficiency
Is a custom solution less than 7% more expensive?

26

Alternatives to TCP and UDP

Can not realistically go ”below” UDP. No software support in
OS.
But TCP provides things we might not need:

Ordered data ← we need that, but also true for UDP and
simple networks
Reliable transmission ← we might not need that
Congestion control ← probably not what we need

Might be able to push what we need into application layer.
Easier on FPGA

27

Scaling of Ethernet

1000Base-T Ethernet is standard. 125 MByte/s
Virtually all computers, FPGAs....

10GBase-XX is commonly available COTS. 1.25 GByte/s
Copper: Switch port ∼$50, network card ∼$100
Available in all bigger FPGAs

40GbE. 5 GByte/s
32 port switch for ∼1000$, network card ∼$150
Cables expensive, short :)
Available in latest gen FPGAs

100GbE, 12.5 GByte/s
switch $200/port, network card ∼$500
That’s ∼4 Bytes/cycle on a modern CPU.

28

Side note: Data storage

Looks like $8/TByte. Let’s assume $20/TByte
Let’s assume 1 mio$/year. That’s 50 PByte/year, 136 TByte/day,
or 1.6 GByte/s.

29

Opinions:

Software stack
Highest level gets data on frame level
Next lowest level should assume FIFO semantics
Plugable support for TCP, UDP etc. Start with TCP

Network mostly based on ethernet, IP
Can use DHCP, BOOTP etc for bring-up!

30

Wish list for Application Layer

Need to organize which source connects to which sink.
Round-Robin or job request for load-balancing?

Send data to more than one node, for selected T-bins, for
monitoring
Diagnose flow limits, dead time etc

31

Wish list for Presentation Layer

Efficient implementation on CPU and FPGA
Easy to add/drop substreams, parts of streams.
Must decode enough without configuration
Empty channels need 0 bytes
Flexible for wide range of data types
Self-documenting
Bindings to many languages

32

A look at MPEG/DVB/ATSC

Digital video broadcast is a stream of multiple channels, video
and audio, time-synchronized
Widely distributed, IP available?

Only some.
Three types of streams:

Transport streamProgram clock reference
Program stream
Packetized elementary stream

33

A look at MPEG/DVB/ATSC

Digital video broadcast is a stream of multiple channels, video
and audio, time-synchronized
Widely distributed, IP available?Only some.
Three types of streams:

Transport streamProgram clock reference
Program stream
Packetized elementary stream

34

MPEG Transport stream

Combines a number of substreams, mostly packetized
elementary streams
Sequence of packets, 188 bytes long
Each packet has data from one substream
Not every packet has timing information.
Interesting fields/items

Random Access indicator: Data from here on ”makes
sense”
Priority fields. Out-of-band data?
Contains multiple programs (group of PES) which can
have different time base
Always has length field.

35

Program Stream

Similar to TS
Designed for ”Reasonably reliable media”. Less protection
against data loss.
Only one time base

36

Packetized elementary stream

Packetized version of an elementary stream
Can be of any length (for video)

37

Features present?

Efficient implementation on CPU and FPGA
Easy to add/drop substreams, parts of streams.
Must decode enough without configuration
Empty channels need 0 bytes
Flexible for wide range of data types
Self-documenting
Bindings to many languages

38

Take away

Protocol itself not suitable for us
But some ideas interesting:

PES packets don’t need to match TS packets
Does ”different time bases” help us?
Sync words to find headers in stream

39

Close out

40

