JAM PDFs, structure functions at large x

Nobuo Sato University of Connecticut Quark Hadron Duality Workshop James Madison University, 2018

Motivations

Motivations

- JLab 12 brings new challenges
 - + Quantitative limits of x, Q^2 where factorization theorems are applicable
 - + What is the relevant variable that shows scaling?
 - + What properties of partonic dof can we infer? e.g intrinsic transverse momentum
 - + Universality of nonperturbative objects \rightarrow predictive power
 - + QCD analysis framework that extend to **semi-inclusive** observables

Motivations

Understanding target mass corrections (see T. Rogers talk)

- + There are a variety TMC
- + In particular Georgi-Politzer (GP) has assumptions on partonic dof
- + Ellis, Furmanski, Petronzio noted that GP implies

$$f(x, k_{\rm T}) = \frac{1}{\pi M^2} \Phi\left(x + \frac{k_{\rm T}^2}{xM^2}\right) \theta(x(1-x)M^2 - k_{\rm T}^2)$$

+ If intrinsic transverse momentum is bounded \rightarrow sets constraints on TMDs (ask J. Collins)

$\ensuremath{\mathsf{PDFs}}$ at high x

High-x analysis setup

Data sets

+ DIS: SLAC(p, d), NMC(p, d/p), BCDMS(p, d)

+ DY: E866(p, d)

High-*x* analysis setup

- Theory setup
 - + Observables computed at NLO in pQCD
 - + DIS structure functions only at leading twist ($W^2 > 10 \text{ GeV}^2$)
 - + No nuclear corrections for d data
- Target Mass Corrections (see T. Rogers talk)
 - + Massless target approximation (MTA)

 $+ x \rightarrow x_{\rm N}$

- + Aivazis-Olness-Tung (AOT)
- + Georgi-Politzer (GP)

High-x analysis setup

Two likelihood analyzes

+ **HWF** \equiv High W fit : $W^2 > 10 \text{GeV}^2$

+ LWF \equiv Low W fit : $W^2 > 4$ GeV²

Results: Data vs. theory

SLAC (p, d)

Predictions of HWF fail even with any TMC

The LWF give a good description for any TMC

Results: Data vs. theory

SLAC (p, d)

• Sizes of the blobs are proportional to χ^2

TMC improves the description at large x and $Q^2 \sim 8 \ {
m GeV}^2$

Results: F_2

Results: u_v PDF

Results: d_v PDF

 The change in *d*_v relative to *u*_v indicates onset of nuclear effects

Discussion

Discussion

• What do we leaned?

- + TMCs($x_{
 m N}$, AOT, GP) improves the data/theory agreement at large-x
- + TMCs(AOT, GP) at LWF give same PDFs/F2
- + Are the PDFs at high-x universal? or just curve fitting? \rightarrow need to validate high-x PDFs in other observables

High-x sensitive observables

- + Lattice QCD: quasi-PDFs, pseudo-PDFs
- + Collider data: W lepton asymmetry, ...
- +~ Large $p_{\rm T}$ spectrum in SIDIS

Different regions are sensitive to distinct physical mechanisms

Theory framework for current fragmentation

Theory framework for current fragmentation

The large $\ensuremath{p_{\mathrm{T}}}$ SIDIS

 \blacksquare The $p_{\rm T}$ cross section @ LO

$$\frac{d\sigma}{dxdQ^2dzdp_{\rm T}} \sim \sum_q e_q^2 \int_{\frac{q_{\rm T}^2}{Q^2} \frac{xz}{1-z} + x}^1 \frac{d\xi}{\xi - x} f_q(\xi,\mu) \ d_q(\zeta(\xi),\mu) \ H(\xi)$$

Comments:

- $+~\xi_{\rm min}$ is $q_{\rm T}$ dependent \rightarrow SIDIS can constrain high-x
- +~ It offers flavor separation by looking at π and K
- $+\,$ gluon initiated subprocess enters at LO \rightarrow constraints on high-x gluons

Summary and outlook

Challenges at high-x

- $+\,$ Establish a TMC theory consistent with factorization
- $+\,$ What can we learn from data and TMCs?
- + High-x PDF validation \rightarrow predictive power