Duality in 12 GeV Era: Projected Results from E12-10-002

Simona Malace Jefferson Lab

Outline

F₂ at large x (and not only) in the context of Hall C's E12-10-002

- Expected physics output:
 - ightarrow constraints for PDF global fits

→ quark-hadron duality studies: inspire the theory community to pursue a fundamental understanding of the phenomenon

 \rightarrow non-singlet moments to higher Q²

ightarrow modeling of resonance and deep inelastic scattering process

E12-10-002

Ran at JLab in Hall C February – March 2018 to measure inclusive cross sections for H(e,e'p) and D(e,e'p) in the resonance and deep inelastic scattering regions

Theory-experiment Collaboration: CJ

Theory-experiment Collaboration: CJ

Theory-experiment Collaboration: CJ

- Include non-perturbative corrections: data with low W are used
- Include nuclear corrections: use of deuterium data requires careful treatment of nuclear corrections

Theory-experiment Collaboration: CJ

Theory-experiment Collaboration: CJ

Theory-experiment Collaboration: CJ

Theory-experiment Collaboration: CJ

(One of the many) Highlights: Improvement in uncertainty of d/u extraction

Theory-experiment Collaboration: CJ

(One of the many) Highlights: Improvement in uncertainty of d/u extraction

Constraints for PDFs: E12-10-002 Impact

Theory-experiment Collaboration: CJ

- We measured both H and D cross sections (free protons and bound neutrons)
- We not only push to larger x up to ~0.87 but we also cover the low x kinematic region – down to ~0.2

 \rightarrow this should help with constraining the nuclear corrections and the d-quark at the same time

From A. Accardi: "... For the d-quark, at large x this data should be competitive with the D0 W asymmetry data, and at low x it might cut another 50% in the uncertainty. So, I would expect some visible impact when we add these to the whole CJ data set."

Bloom-Gilman Duality in inclusive electron-proton scattering

The resonance region data:

- oscillate around are on average equivalent to the scaling curve

Phys. Rev. Lett. 25, 1140 (1970)

- "slide" along the deep inelastic curve with increasing Q²

 \blacktriangleright Quantitatively: relative difference 10% for Q²=1 GeV² to <2% beyond Q²=2 GeV²

ξ variable is used to allow comparison of NMC fit - high (W², Q²) DIS data - to the lower (W², Q²) resonance region data at the same ordinate point

Example: x = 0.6 can correspond to $Q^2 = 1.5$ GeV² in the delta region or to a point in DIS with W² = 14 GeV² and Q² = 20 GeV²

> Jefferson Lab experiment, E94-110: duality verified in all separated spin-averaged structure functions

→ Compare resonance region data to pQCD fits with added target mass corrections and use x instead of ξ

Resonances average to pQCD curve down to a surprisingly low Q^2 not only for F_2 but also for F_1 and F_L

This high-precision experiment pushed duality studies to $Q^2 = 3.5 \text{ GeV}^2$

Jefferson Lab experiment, E00-116: pushing duality studies to higher Q²

Jefferson Lab experiment, E00-116: pushing duality studies to higher Q²

- It is not surprising that:
 - \rightarrow though resonances DO average to MSTW08+TM at Q² = 0.9 GeV², x ~ (0.25,0.7)
 - \rightarrow resonances DO NOT average to MSTW08+TM at Q² = 6.4 GeV², x ~ (0.7,0.95)

This is not a violation of duality but due to the underestimation of PDFs strength at large x

- "Duality curve" for verification: PDF fit better constrained at large x
 - \rightarrow Second generation PDF fits extended their PDF extraction to larger x by lowering the W² kinematic cuts: ABKM, CJ

 \rightarrow Curve used for duality verification must be from 2nd generation PDF fits, especially when resonances cover the largest x region

Define duality intervals

Region	1 st	2 nd	3 rd	4 th	DIS	global
W _{min}	1.3	1.9	2.5	3.1	3.9	1.9
W _{max}	1.9	2.5	3.1	3.9	4.5	4.5

 \rightarrow There is arbitrariness in defining the local W intervals; typically try to catch peaks and valleys within one interval

How well resonance data average to the scaling curve?

• Calculate ratio:

$$\int_{x_{min}}^{x_{max}} F^{data}(x,Q^2) \, dx \Big/ \int_{x_{min}}^{x_{max}} F^{param.}(x,Q^2) \, dx$$

Duality verified against scaling from ABKM

Duality verified against scaling from ABKM

The Q² dependence is what matters, right?

Jefferson Lab experiment, E12-10-002: pushing duality studies to even higher Q²

Another Theory-Experiment Collaboration: develop a different framework to understand the quark-hadron duality – see talk by John Collins

Another Theory-Experiment Collaboration: develop a different framework to understand the quark-hadron duality – see talk by John Collins

E12-10-002: very preliminary cross sections from our very first pass

 \rightarrow Second pass already done (last week), new preliminary cross sections will be available soon

 \rightarrow Preliminary results on duality checks from the new data will be presented at the SESAPS 2018