Duality in Nuclei: The EMC Effect

Dave Gaskell Jefferson Lab

Quark Hadron Duality Workshop: Probing the Transition from Free to Confined Quarks September 23-25, 2018

1

Outline

- The EMC Effect
- Structure functions in the resonance region nucleons
 → nuclei
- Duality in nuclear structure functions \rightarrow the EMC Effect
- JLab measurements at 6 and 11 GeV

DIS: Structure Functions and Quarks in the Nucleus

Deep Inelastic Scattering provides access to quark distributions in *nucleon* via structure functions:

0.2

0.4

X

0.6

0.8

Nuclear binding energies (~MeV) small compared to typical DIS energies (~GeV) \rightarrow (Naïve) expectation was that nuclear effects in DIS would be small

$$R = \frac{F_2^A}{ZF_2^p + (A - Z)F_2^n}$$

Figure from Bickerstaff and Thomas, J. Phys. G 15, 1523 (1989) Calculation: Bodek and Ritchie PRD 23, 1070 (1981)

0.9

0

Properties of the EMC Effect

Global properties of the EMC effect

- 1. Universal x-dependence
- 2. Little Q² dependence
- 3. EMC effect increases with *A*
- → Anti-shadowing region shows little nuclear dependence

Properties of the EMC Effect

 \rightarrow Nuclear structure functions evolve with Q² in same way as nucleon

Q² Dependence of the EMC Effect

Quark-Hadron Duality in Nucleons

I. Niculescu et al., PRL85:1182 (2000)

→ Resonance region structure functions oscillate around smooth, DIS curve → Quantitative agreement between DIS/resonance F_2 when integrating over distinct regions in W^2

Quark-Hadron Duality in Nuclei

- Free nucleon
 - average over
 resonance region =
 DIS scaling limit
- Bound nucleon
 - Fermi motion does the averaging for us
 - Resonances much less prominent in nuclear structure functions
- Nuclear structure functions appear to "scale" to lower Q² than their free nucleon counterparts with no explicit resonance averaging

J. Arrington, et al., PRC73:035205 (2006)

EMC Effect in Resonance Region

JLab Experiment E03-103

Measurement of the EMC Effect in light nuclei (³He and ⁴He) and at large x

 \rightarrow ³He, ⁴He amenable to calculations using "exact" nuclear wave functions

→ Large x dominated by binding, conventional nuclear effects

A(e,e') at *5.77* GeV in Hall C at JLAB (with E02-019, *x>1*)

Targets: H, ²H, ³He, ⁴He, Be, C, Cu, Au

Six angles to measure Q^2 dependence

Spokespersons: DG and J. Arrington Graduate students: J. Seely and A. Daniel

Deep Inelastic Scattering at low W

•At x > 0.6, we are in the "resonance region", but Q^2 is still large

•Are we really sensitive to quarks in this regime?

• Test by checking Q² dependence of (carbon) ratios and structure functions

Carbon/²H Ratio and Q² Dependence

Carbon/²H Ratio and Q² Dependence

More detailed look at scaling of C/D ratios

C/D ratios at fixed x are Q^2 independent for

 W^2 >2 GeV² and Q^2 >3 GeV²

For E03-103, this extends to x=0.85

Structure Functions

Scaling of F_2^D – Fixed x

Although target ratios scale down to $Q^2=3$ GeV², for W²>2 GeV², F_2 shows deviations from logarithmic scaling

Scaling of F_2^D – Fixed ξ

Scaling:

Curves fit to large Q^2 SLAC data \rightarrow compared to JLab data at lower Q^2

Looking at Q^2 dependence for fixed ξ , structure functions shows improved scaling

JLab E03-103 and the Nuclear Dependence of the EMC Effect

New definition of "size" of the EMC effect

→Slope of line fit from x=0.35 to 0.7

Assumes shape is universal for all nuclei

→Normalization uncertainties a much smaller relative contribution

E03103 Results: EMC Effect and Local Nuclear Density

⁹Be has low average density \rightarrow Large component of structure is $2\alpha+n$

 \rightarrow Most nucleons in tight, α -like configurations

EMC effect driven by *local* rather than *average* nuclear density

Jefferson Lab

Can we see similar behavior in other nuclei?

E12-10-008: EMC effect in light→ heavy nuclei

Spokespersons: J. Arrington, A. Daniel, N. Fomin, D. Gaskell

E03-103: EMC at 6 GeV

- \rightarrow Focused on light nuclei
- → Large EMC effect for ${}^{9}\text{Be}$
- \rightarrow Local density/cluster effects?

J. Seely, et al., PRL 103, 202301 (2009)

E12-10-008: EMC effect at 12 GeV

- \rightarrow Higher Q², expanded range in x (both low and high x)
- → Light nuclei includes ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C
- → Heavy nuclei include ⁴⁰Ca, ⁴⁸Ca and Cu and additional heavy nuclei of particular interest for EMC-SRC correlation studies

E12-10-008 (EMC effect) and E12-06-105 (x>1)

- Both experiments use wide range of nuclear targets to study impact of cluster structure, separate mass and isospin dependence on SRCs, nuclear PDFs
- Experiments will use a common set of targets to provide more information in the EMC-SRC connection

²⁷ AI	^{64*} Cu
^{40*,48} Ca	^{108*} Ag
⁴⁸ Ti	^{119*} Sn
⁵⁴ Fe	^{197*} Au
^{58,64} Ni	²³² Th

Light nuclei: Reliable calculations of nuclear structure (e.g. clustering)

E12-10-008: Commissioning running

- → Ran with E12-10-002 at part of commissioning experiment run to make some initial EMC effect measurements
- \rightarrow ~2 days used to:
- Measure Q² dependence of EMC effect over range of x to check scaling of EMC ratio → carbon target
- 2. Obtain data on a few light nuclei at a single Q²/angle (⁹Be, ¹⁰B, ¹¹B, C)

Full experiment: \rightarrow All targets at 21 degrees, smaller subset at 35 degrees \rightarrow 25,29,40 degrees used for Q² dependence tests w/Carbon

х_{вј}

Summary

- Nuclear structure function ratios (EMC effect) appear to show scaling down to W²=2 GeV² for Q²>3 GeV² → consequence of duality + Fermi smearing in nucleus
 - Apparent scaling does not work as well for individual structure functions, unless studied as function of ξ
- Allows access to EMC effect measurements to rather large x (0.85) at 6 GeV beam energies
 - Larger x should be accessible with JLab 12 GeV measurements
 - Will ratios for $W^2 < 2 \text{ GeV}^2$ scale at larger Q^2
- Precise EMC Effect measurements at large x provide test of the wave functions used in EMC effect calculations
- Applicability of duality (or not) in nuclear structure functions also relevant for neutrino experiments → Monte Carlo models

Carbon/²H Ratio and Q² Dependence

Carbon/²H Ratio and Q² Dependence

Moments of Nuclear Structure Functions

Low Q², large x data used to calculate Cornwall-Norton moments

 $M_2(Fe) = Z \times M_2(p) + (A - Z) \times M_2(n)$

Jefferson Lab

I. Niculescu, et al, PRC73,035205(2006)