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Outline

What we (think we) understand from theory

Duality (global) in QCD

What we don’t (yet) know … what do we do next?

Local duality

insights from models
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Duality in electron-proton scattering



Duality and QCD
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Operator product expansion in QCD

expand moments of structure functions in powers of 1/Q2
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matrix elements of operators
          with specific “twist” 

τ = dimension − spin
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Duality          suppression of higher twists

Duality and QCD

If moment      independent of Q≈
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Operator product expansion in QCD

expand moments of structure functions in powers of 1/Q2
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Q2 > 4 GeV2, W 2 > 12.25 GeV2

Q2 > m2
c , W 2 > 3 GeV2

Note:  at finite Q  , from kinematics any moment
of any structure function (of any twist) must,
by definition, include the resonance region
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at Q2 = 1 GeV2

Wres = 2 GeV =) xres ⇡ 0.24

resonances

Duality and QCD



Resonance and DIS regions are intimately connected
resonances an integral part of scaling structure function

e.g.  in large-N  limit, spectrum of zero-width resonances is 
“maximally dual” to quark-level (smooth) structure function

c

Duality and QCD

Note:  at finite Q  , from kinematics any moment
of any structure function (of any twist) must,
by definition, include the resonance region
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On average, nonperturbative interactions between
quarks and gluons not dominant (at these scales)

nontrivial interference between resonances?

Resonances & twists

Total “higher twist” is small at scales Q2 � O(1 GeV2)

Can we understand this dynamically,  at quark level?

expanded data set has potentially significant 
implications for global quark distribution studies

Can we use resonance region data to learn about
leading twist structure functions (and vice versa)?



Scaling functions from resonances

Earliest attempts predate QCD

e.g. harmonic oscillator spectrum
including states with spin = 1/2, ..., n+1/2
(n even:  I = 1/2,    n odd:  I = 3/2)
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Domokos et al. (1971)



�n ! 0in             limit

cf.  Drell-Yan-West relation

F2 ⇠ (µ2
1/2 + µ2

3/2)
(�0 � 1)3

(�0 � 1 + r2)4

similar behavior found in many models
Einhorn (1976)   (‘t Hooft model)
Greenberg (1993)   (NR scalar quarks in HO potential)
Pace, Salme, Lev (1995)   (relativistic HO with spin)
Isgur et al. (2001)   (transition to scaling)
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Earliest attempts predate QCD

e.g. harmonic oscillator spectrum
including states with spin = 1/2, ..., n+1/2
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Scaling functions from resonances



Phenomenological analyses at finite Q2

additional constraints from threshold behavior at
and asymptotic behavior at 
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Scaling functions from resonances

Davidovsky, Struminsky (2003)



valence-like structure of dual function suggests
“two-component duality”:

valence (Reggeon exchange) dual to resonances

sea (Pomeron exchange) dual to background F
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Phenomenological analyses at finite Q2

Scaling functions from resonances

Davidovsky, Struminsky (2003)

21 isospin-1/2 & 3/2
resonances (mass < 2 GeV)



Scaling functions from resonances

Explicit realization of Veneziano & Bloom-Gilman duality
q
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Veneziano duality
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high s, low |t|! s↵(t)Veneziano model not unitary,
has no imaginary parts

generalization of narrow-resonance approximation, 
with nonlinear, complex Regge trajectories
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“dual amplitude with Mandelstam analyticity” (DAMA) model
Jenkovszky et al.



Scaling functions from resonances

Explicit realization of Veneziano & Bloom-Gilman duality

for large x and Q  , have power-law behavior2

Jenkovszky, Magas, Londergan, 
Szczepaniak (2012)

F2 ⇠ (1� x)2↵t(0) ln 2g/ ln g

where parameter    can be Q   dependentg 2



low energy
coherent scattering from quarks dσ ∼

(
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high energy

incoherent scattering from quarks

Consider simple quark model with spin-flavor symmetric 
wave function

how can square of a sum become sum of squares?

For duality to work, these must be equal

More than one flavor?



e.g. for toy model of two quarks bound in a harmonic 
oscillator potential, structure function given by
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Dynamical cancellations
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Close, Isgur (2001)



duality is realized by summing over at least one 
complete set of even and odd parity resonances

in NR Quark Model, even & odd parity states generalize
to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

Dynamical cancellations

Close, WM (2003, 2009)

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

(anti) symmetric component of ground state wave function� (⇢) =



Dynamical cancellations

Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-
tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

summing over all resonances in 56   and 70   multiplets+ -

at the quark level, n/p ratio is
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� = ⇢in SU(6) limit          , with relative strengths of
N     N* transitions



cat’s ears diagram  (4-fermion higher twist ~        )    1/Q2
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Accidental cancellations of charges?

should not hold for neutron !!
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HT � 1 �
�
2� 4

9
+

1
9

�
= 0 !

HT � 0 �
�4

9
+ 2� 1

9

�
�= 0

Brodsky  (2000)

duality in proton a coincidence!



No free neutron targets, but iterative method allows 
neutron resonance structure to be extracted from
deuteron & proton data

Malace, Kahn, WM, Keppel (2010)

Duality in electron-neutron scattering
F
2

locally, violations of duality in
resonance regions < 15-20%
(largest in     region)�

evidence that duality is not
accidental, but a general
feature of resonance-scaling
transition!

C. Keppel & 
I. Niculescu  talks



Confirmation of duality (experimentally & theoretically) suggests
origin in dynamical cancelations between resonances

incorporate nonresonant background in same framework
+ quantum mechanics

�⇤NN⇤
explore more realistic descriptions based on
phenomenological            form factors

Outlook and open questions

“resonance region” vs.  “resonances”

Is duality between (high energy) continuum and resonances,
or between total (resonance + background)?

Era of  “quantitative duality” — need to define the extent
to which duality “works”

Where does duality not work (and why)?



Thank you!


