Duality in electron scattering: insights from theory

Wally Melnitchouk Jefferson Lab

Outline

- What we (think we) understand from theory
- Duality (global) in QCD
- Local duality
\rightarrow insights from models
- What we don't (yet) know ... what do we do next?

Duality in electron-proton scattering

Duality and QCD

- Operator product expansion in QCD
\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

matrix elements of operators with specific "twist" τ

$$
\begin{aligned}
\text { e.g. } & \langle N| \bar{\psi} \gamma^{+} \psi|N\rangle \\
& \langle N| \bar{\psi} \widetilde{G}^{+\nu} \gamma_{\nu} \psi|N\rangle \\
& \text { etc. }
\end{aligned}
$$

Duality and QCD

\square Operator product expansion in QCD
\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

- If moment \approx independent of Q^{2}
\longrightarrow "higher twist" terms $A_{n}^{(\tau>2)}$ small
$\square \quad$ Duality \longleftrightarrow suppression of higher twists

Duality and QCD

- Note: at finite Q^{2}, from kinematics any moment of any structure function (of any twist) must, by definition, include the resonance region

$$
W^{2}=M^{2}+Q^{2} \frac{(1-x)}{x} \quad x_{\mathrm{res}}=\frac{Q^{2}}{W_{\mathrm{res}}^{2}-M^{2}+Q^{2}}
$$

Duality and QCD

- Note: at finite Q^{2}, from kinematics any moment of any structure function (of any twist) must, by definition, include the resonance region
- Resonance and DIS regions are intimately connected \rightarrow resonances an integral part of scaling structure function e.g. in large- N_{c} limit, spectrum of zero-width resonances is "maximally dual" to quark-level (smooth) structure function

Resonances \& twists

- Total "higher twist" is small at scales $Q^{2} \sim \mathcal{O}\left(1 \mathrm{GeV}^{2}\right)$
- On average, nonperturbative interactions between quarks and gluons not dominant (at these scales)
\longrightarrow nontrivial interference between resonances?
- Can we understand this dynamically, at quark level?
- Can we use resonance region data to learn about leading twist structure functions (and vice versa)?
\longrightarrow expanded data set has potentially significant implications for global quark distribution studies

Scaling functions from resonances

- Earliest attempts predate QCD
$\longrightarrow e . g$. harmonic oscillator spectrum $M_{n}^{2}=(n+1) \Lambda^{2}$ including states with spin $=1 / 2, \ldots, n+1 / 2$
(n even: $I=1 / 2, \quad n$ odd: $I=3 / 2$)
Domokos et al.(1971)
\longrightarrow at large Q^{2} magnetic coupling dominates

$$
G_{n}\left(Q^{2}\right)=\frac{\mu_{n}}{\left(1+Q^{2} r^{2} / M_{n}^{2}\right)^{2}}
$$

$$
r^{2} \approx 1.41
$$

\longrightarrow in Bjorken limit, $\sum_{n} \longrightarrow \int d z, \quad z \equiv M_{n}^{2} / Q^{2}$

$$
F_{2} \sim\left(\omega^{\prime}-1\right)^{1 / 2}\left(\mu_{1 / 2}^{2}+\mu_{3 / 2}^{2}\right) \int_{0}^{\infty} d z \frac{z^{3 / 2}\left(1+r^{2} / z\right)^{-4}}{z+1-\omega^{\prime}+\Gamma_{0}^{2} z^{2}}
$$

\longrightarrow scaling function of $\omega^{\prime}=\omega+M^{2} / Q^{2} \quad(\omega=1 / x)$

Scaling functions from resonances

- Earliest attempts predate QCD
$\longrightarrow e . g$. harmonic oscillator spectrum $M_{n}^{2}=(n+1) \Lambda^{2}$ including states with spin $=1 / 2, \ldots, n+1 / 2$
(n even: $I=1 / 2, \quad n$ odd: $I=3 / 2$) Domokos etal.(1971)
\longrightarrow in $\Gamma_{n} \rightarrow 0$ limit

$$
F_{2} \sim\left(\mu_{1 / 2}^{2}+\mu_{3 / 2}^{2}\right) \frac{\left(\omega^{\prime}-1\right)^{3}}{\left(\omega^{\prime}-1+r^{2}\right)^{4}}
$$

$c f$. Drell-Yan-West relation

$$
G\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{m} \Longleftrightarrow F_{2}(x) \sim(1-x)^{2 m-1}
$$

\longrightarrow similar behavior found in many models
Einhorn (1976) ('t Hooft model)
Greenberg (1993) (NR scalar quarks in HO potential)
Pace, Salme, Lev (1995) (relativistic HO with spin)
Isgur et al. (2001) (transition to scaling)

Scaling functions from resonances

- Phenomenological analyses at finite Q^{2}
\longrightarrow additional constraints from threshold behavior at $q \rightarrow 0$ and asymptotic behavior at $Q^{2} \rightarrow \infty$

$$
\left(1+\frac{\nu^{2}}{Q^{2}}\right) F_{2}^{R}=M \nu\left[\left|G_{+}^{R}\right|^{2}+2\left|G_{0}^{R}\right|^{2}+\left|G_{-}^{R}\right|^{2}\right] \delta\left(W^{2}-M_{R}^{2}\right)
$$

Davidovsky, Struminsky (2003)
$\longrightarrow 21$ isospin- $1 / 2 \& 3 / 2$ resonances (with mass $<2 \mathrm{GeV}$)

$$
\begin{aligned}
\left|G_{ \pm}^{R}\left(Q^{2}\right)\right|^{2} & =\left|G_{ \pm}^{R}(0)\right|^{2}\left(\frac{|\vec{q}|}{|\vec{q}|_{0}} \frac{\Lambda^{\prime 2}}{Q^{2}+\Lambda^{\prime 2}}\right)^{\gamma_{1}}\left(\frac{\Lambda^{2}}{Q^{2}+\Lambda^{2}}\right)^{m_{ \pm}} \\
\left|G_{0}^{R}\left(Q^{2}\right)\right|^{2} & =C^{2}\left(\frac{Q^{2}}{Q^{2}+\Lambda^{\prime \prime 2}}\right)^{2 a} \frac{q_{0}^{2}}{|\vec{q}|^{2}}\left(\frac{|\vec{q}|}{|\vec{q}|_{0}} \frac{\Lambda^{\prime 2}}{Q^{2}+\Lambda^{\prime 2}}\right)^{\gamma_{2}}\left(\frac{\Lambda^{2}}{Q^{2}+\Lambda^{2}}\right)^{m_{0}}
\end{aligned}
$$

\longrightarrow in $x \rightarrow 1$ limit,

$$
F_{2}(x) \sim(1-x)^{m_{+}}
$$

Scaling functions from resonances

- Phenomenological analyses at finite Q^{2}

21 isospin- $1 / 2 \& 3 / 2$
resonances (mass $<2 \mathrm{GeV}$)

Davidovsky, Struminsky (2003)
\longrightarrow valence-like structure of dual function suggests "two-component duality":

- valence (Reggeon exchange) dual to resonances $F_{2}^{(\text {val })} \sim x^{0.5}$
- sea (Pomeron exchange) dual to background $F_{2}^{(\text {sea) }} \sim x^{-0.08}$

Scaling functions from resonances

- Explicit realization of Veneziano \& Bloom-Gilman duality

$$
V(s, t)=\frac{\Gamma(1-\alpha(s)) \Gamma(1-\alpha(t))}{\Gamma(2-\alpha(s)-\alpha(t))}
$$

\longrightarrow Veneziano model not unitary,
$\rightarrow s^{\alpha(t)}$ high s, low $|t|$ has no imaginary parts
\longrightarrow generalization of narrow-resonance approximation, with nonlinear, complex Regge trajectories

$$
D(s, t)=\int_{0}^{1} d z\left(\frac{z}{g}\right)^{-\alpha_{s}(s(1-z))-1}\left(\frac{1-z}{g}\right)^{-\alpha_{t}(t z)-1}
$$

"dual amplitude with Mandelstam analyticity" (DAMA) model

Scaling functions from resonances

- Explicit realization of Veneziano \& Bloom-Gilman duality
\longrightarrow for large x and Q^{2}, have power-law behavior

$$
F_{2} \sim(1-x)^{2 \alpha_{t}(0) \ln 2 g / \ln g}
$$

where parameter g can be Q^{2} dependent

Jenkovszky, Magas, Londergan,
Szczepaniak (2012)

- Consider simple quark model with spin-flavor symmetric wave function
low energy
\longrightarrow coherent scattering from quarks $d \sigma \sim\left(\sum_{i} e_{i}\right)^{2}$
high energy
\longrightarrow incoherent scattering from quarks $d \sigma \sim \sum_{i} e_{i}^{2}$
- For duality to work, these must be equal
\rightarrow how can square of a sum become sum of squares?

- Dynamical cancellations

\longrightarrow e.g. for toy model of two quarks bound in a harmonic oscillator potential, structure function given by

$$
F\left(\nu, \mathbf{q}^{2}\right) \sim \sum_{n}\left|G_{0, n}\left(\mathbf{q}^{2}\right)\right|^{2} \delta\left(E_{n}-E_{0}-\nu\right)
$$

\longrightarrow charge operator $\Sigma_{i} e_{i} \exp \left(i \mathbf{q} \cdot \mathbf{r}_{i}\right)$ excites even partial waves with strength $\propto\left(e_{1}+e_{2}\right)^{2}$ odd partial waves with strength $\propto\left(e_{1}-e_{2}\right)^{2}$
\longrightarrow resulting structure function

$$
F\left(\nu, \mathbf{q}^{2}\right) \sim \sum_{n}\left\{\left(e_{1}+e_{2}\right)^{2} G_{0,2 n}^{2}+\left(e_{1}-e_{2}\right)^{2} G_{0,2 n+1}^{2}\right\}
$$

\longrightarrow if states degenerate, cross terms $\left(\sim e_{1} e_{2}\right)$ cancel when averaged over nearby even and odd parity states

- Dynamical cancellations

\rightarrow duality is realized by summing over at least one complete set of even and odd parity resonances
\longrightarrow in NR Quark Model, even \& odd parity states generalize to $56(L=0)$ and $70(L=1)$ multiplets of spin-flavor $\mathrm{SU}(6)$

representation	${ }^{2} \mathbf{8}\left[\mathbf{5 6}^{+}\right]$	${ }^{4} \mathbf{1 0}\left[\mathbf{5 6}^{+}\right]$	${ }^{2} \mathbf{8}\left[\mathbf{7 0}^{-}\right]$	${ }^{4} \mathbf{8}\left[\mathbf{7 0}^{-}\right]$	${ }^{2} \mathbf{1 0}\left[\mathbf{7 0}^{-}\right]$	Total
F_{1}^{p}	$9 \rho^{2}$	$8 \lambda^{2}$	$9 \rho^{2}$	0	λ^{2}	$18 \rho^{2}+9 \lambda^{2}$
F_{1}^{n}	$(3 \rho+\lambda)^{2} / 4$	$8 \lambda^{2}$	$(3 \rho-\lambda)^{2} / 4$	$4 \lambda^{2}$	λ^{2}	$\left(9 \rho^{2}+27 \lambda^{2}\right) / 2$

$\lambda(\rho)=$ (anti) symmetric component of ground state wave function

■ Dynamical cancellations

\longrightarrow in $\operatorname{SU}(6)$ limit $\lambda=\rho$, with relative strengths of $N \rightarrow N^{*}$ transitions

$S U(6):$	$\left[\mathbf{5 6}, \mathbf{0}^{+}\right]^{\mathbf{2}} \mathbf{8}$	$\left[\mathbf{5 6 ,}, \mathbf{0}^{+}\right]^{\mathbf{4}} \mathbf{1 0}$	$\left[\mathbf{7 0}, \mathbf{1}^{-}\right]^{\mathbf{2}} \mathbf{8}$	$\left[\mathbf{7 0}, \mathbf{1}^{-}\right]^{\mathbf{4}} \mathbf{8}$	$\left[\mathbf{7 0}, \mathbf{1}^{-}\right]^{\mathbf{2}} \mathbf{1 0}$	total
F_{1}^{p}	9	8	9	0	1	27
F_{1}^{n}	4	8	1	4	1	18

\longrightarrow summing over all resonances in $\mathbf{5 6}^{+}$and 70^{-}multiplets

$$
\frac{F_{1}^{n}}{F_{1}^{p}}=\frac{18}{27}=\frac{2}{3}
$$

\longrightarrow at the quark level, n / p ratio is

$$
\frac{F_{1}^{n}}{F_{1}^{p}}=\frac{4 d+u}{d+4 u}=\frac{6}{9}=\frac{2}{3} \quad!\quad \text { if } u=2 d
$$

- Accidental cancellations of charges?

cat's ears diagram (4-fermion higher twist $\sim 1 / Q^{2}$)

proton $\mathrm{HT} \sim 1-\left(2 \times \frac{4}{9}+\frac{1}{9}\right)=0$!
neutron $\mathrm{HT} \sim 0-\left(\frac{4}{9}+2 \times \frac{1}{9}\right) \neq 0$
\longrightarrow duality in proton a coincidence!
\longrightarrow should not hold for neutron !!

Duality in electron-neutron scattering

\square No free neutron targets, but iterative method allows neutron resonance structure to be extracted from deuteron \& proton data

Malace, Kahn, WM, Keppel (2010)
\rightarrow locally, violations of duality in resonance regions < 15-20\% (largest in Δ region)
\longrightarrow evidence that duality is not accidental, but a general feature of resonance-scaling transition!

Outlook and open questions

- Confirmation of duality (experimentally \& theoretically) suggests origin in dynamical cancelations between resonances
\rightarrow explore more realistic descriptions based on phenomenological $\gamma^{*} N N^{*}$ form factors
- Era of "quantitative duality" - need to define the extent to which duality "works"
- Is duality between (high energy) continuum and resonances, or between total (resonance + background)?
\rightarrow "resonance region" vs. "resonances"
\rightarrow incorporate nonresonant background in same framework + quantum mechanics
- Where does duality not work (and why)?

