Duality averaging of structure functions: An Experimental Perspective

Eric Christy HAMPTON

To study duality experimentally we wish to examine how the *resonances follow* the *scaling curve*

However, we must first define what we mean by these terms.

→ What do we mean by *resonances follow*?

JMU Duality Workshop, Eric Christy

2

Previously observed that resonance region proton F_2 averages to a scaling curve

Examine highest precision Resonance Region data on proton from Jlab Hall C E94-110

JMU Duality Workshop, Eric Christy

3

Separated F₁, F₁ data from E94-110 provide more insight

- → Duality observed to hold at 10-20% level depending on the scaling curve chosen SLAC F2global (Whitlow) + R1990 (Tao) or MRST2004 PDF
- → Target Mass (TM) contributions can be significant at low Q², especially in F_L
 => These are *necessary* for duality to hold at a reasonable level

Examine duality in F_1 and F_1 relative to empirical DIS fit:

F,ALLM fit to F, $R = \sigma_1 / \sigma_T$ H. Abramowicz and A.Levy, K. Abe et.al Hep-ph/9712415 Phys.Lett.B452:194-200,1999 2 = 0.5= 0.5 $\Omega^2 = 1.25$ = 1.25/F,^{DIS} 0 0 DIS $\Omega^2 = 2$ 11 F res res 0 = .3 $\Omega^{2} = 3$ n 0 $= 4 \text{ GeV}^2$ $Q^2 = 4 \text{ GeV}^2$ n 0.2 0.2 0.4 0.6 0.8 1 0 0.4 0.6 0.8 0 \mathbf{X} X

Couple of important observations:

- \rightarrow Many resonances pass though a given x for a large enough range of Q^2
- \rightarrow DIS fit describes well the average Q² dependence of resonant Region structure

Several methods have been utilized for quantification, including:

(i) Compare Q² dependence of integral over local W² ranges to DIS scaling curve (or pQCD curve) see talk by I. Niculescu

(ii) Compare structure function moments at different orders (n=2,4,6,...) to the Q² dependence expected from pQCD+TM (scaling predictions).

(iii) Compare *truncated* moments defined over local W² ranges to pQCD evolution.

(iv) Calculate averaging over Q² for fixed x range

JMU Duality Workshop, Eric Christy 6

Truncated Moments

Originally developed to address lack of low x data

Forte and Magnea, PLB 448, 295 (1999); Forte, Magnea, Piccione, and Ridolfi, NPB 594, 46 (2001); Piccione PLB 518, 207 (2001); Kotlorz and Kotlorz, PLB 644, 284 (2007).

Idea: construct doubly truncated moments from

$$\overline{M}_n(\Delta x, Q^2) = \int_{\Delta x} dx \ x^{n-2} \ F_2(x, Q^2)$$

Truncated moments follow **DGLAP-like evolution** equations.

$$\frac{d\overline{M}_n(\Delta x, Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left(P'_{(n)} \otimes \overline{M}_n \right) \left(\Delta x, Q^2 \right)$$

With modified splitting functions given by

$$P'_n(z, \alpha_S(Q^2)) = z^n P(z, \alpha_S(Q^2))$$

Allows study of **regions in W** within pQCD in well-defined, systematic way.

Truncated Moment Analysis: basic idea

Allows study of *regions in W* within pQCD framework

→ Compare integral over select resonance regions to evolved scaling curve + TM

→ Scaling curve is empirical
 Fit to data at Q² = 25, where
 TM contribution has been
 separated from leading-twist
 via an unfolding Procedure.

→ Scaling curve is then evolved to lower Q^2 via non-singlet evolution before recalculating the TM contributions at the lower Q^2 .

8

What DIS curve do we evolve?

- \rightarrow Let data at Q² = 25 Gev² determine curve
- \rightarrow Remove TM contribution via unfolding
- \rightarrow Evolve with curve to lower Q² via non-singlet evolution
- \rightarrow Include TM contribution at lower Q²

Unfolding TM Contributions from data

In the Operator Product Expansion

$$F_{2}^{TM}(x,Q^{2}) = \frac{x^{2}}{r^{3}} \frac{F_{2}^{(0)}(\xi,Q^{2})}{\xi^{2}} + 6\frac{M^{2}}{Q^{2}} \frac{x^{3}}{r^{4}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{x'^{2}} + 12\frac{M^{4}}{Q^{4}} \frac{x^{4}}{r^{5}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' \frac{F_{2}^{(0)}(x'',Q^{2})}{x''^{2}} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{M^{2}}{Q^{2}} \frac{x^{2}}{r^{2}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{x'^{2}} + \frac{2M^{4}}{Q^{4}} \frac{x^{3}}{r^{3}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' \frac{F_{2}^{(0)}(x'',Q^{2})}{x''^{2}} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{M^{2}}{Q^{2}} \frac{x^{2}}{r^{2}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{x'^{2}} + \frac{2M^{4}}{Q^{4}} \frac{x^{3}}{r^{3}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' \frac{F_{2}^{(0)}(x'',Q^{2})}{x''^{2}} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{M^{2}}{Q^{2}} \frac{x^{2}}{r^{2}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{x'^{2}} + \frac{2M^{4}}{Q^{4}} \frac{x^{3}}{r^{3}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' \frac{F_{2}^{(0)}(x'',Q^{2})}{x''^{2}} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{M^{2}}{Q^{2}} \frac{x^{2}}{r^{2}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{x'^{2}} + \frac{2M^{4}}{Q^{4}} \frac{x^{3}}{r^{3}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' \frac{F_{2}^{(0)}(x'',Q^{2})}{x''^{2}} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{M^{2}}{Q^{2}} \frac{x^{2}}{r^{2}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{x''^{2}} + \frac{2M^{4}}{Q^{4}} \frac{x^{3}}{r^{3}} \int_{\xi}^{1} dx' \int_{x'}^{1} dx'' \frac{F_{2}^{(0)}(x'',Q^{2})}{x''^{2}} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{2M^{4}}{Q^{2}} \frac{x^{3}}{r^{3}} \int_{\xi}^{1} dx' \frac{F_{2}^{(0)}(x',Q^{2})}{\xi} \\ F_{1}^{TM}(x,Q^{2}) = \frac{x}{r} \frac{F_{1}^{(0)}(\xi,Q^{2})}{\xi} + \frac{F_{1}^{(0)}(\xi,Q$$

$$2xF_1^{TM} = \frac{F_2^{TM} - F_L^{TM}}{r^2}$$

$$2xF_1^{(0)} = F_2^{(0)} - F_L^{(0)}$$

$$r = 1 + \nu^2/Q^2 = \sqrt{1 + \frac{4M^2x}{Q^2}}$$

$$\xi = 2x/(1+r)$$

Parameterize $F_{2,L}^{M=0}$ (x,Q²) and fit $F_{2,L}^{M=0}$ (x,Q²) to world data set => determine TMCs directly from data.

- Not a perturbative expansion
- Assume that higher twist operators obey same formalism.

Proton charged lepton data on F_2 and F_1 fit for $0.3 < Q^2 < 250$ and $x > 1x10^{-4}$

F₂^p results

(arXiv: 1201.0576 MEC, J. Blumlein, H. Bottcher)

F^p results from TMC fit

(arXiv: 1201.0576 MEC, J. Blumlein, H. Bottcher)

Can study \rightarrow test pQCD evolution of extracted $F_{L,2}^{(0)}$

→ Further duality studies using as 'scaling' curve

A. Psaker, W. Melnitchouk, MEC, C. Keppel

Phys.Rev.C. 78, 025206

Dependence of resonance data to LT+TMC

Q² dependence of truncated moment ratios

- \rightarrow TM are important at low Q²
- → Ratio is relatively flat for W_{Max} above Δ

- $\rightarrow\,$ ratios saturate at ~1.1-1.2 at large Q^2
- → Difference from unity has been interpreted as H-T contribution

Data seems to be telling us that the duality curve is no pure pQCD

Can we let the data tells us what the curve is? How do we do the averaging?

DIS fit – 'F2ALLM' H.Abramowicz and A.Levy, hep-ph/9712415 Res fit - E.C. and P.E. Bosted, PRC 81,055213

Note the following:

 Each resonance slides to higher x along the DIS fit

2. Averaging over a Q² range at fixed x effectively averages over a number of resonances including peaks and valleys.

=> Take out Q² dependence
 Using DIS curve then average over
 range in Q²

'DIS-like' duality averaging procedure

JMU Duality Workshop, Eric Christy

17

9 Q² bins 0.3 $Q_{c}^{2} = 3$ 0.25 Take average over Q² 0.2 d ℕ 0.15 0.1 DIS fit 0.05 0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 \times

JMU Duality Workshop, Eric Christy 19

Correct Model to data using average of data / (res model) in each x bin

JMU Duality Workshop, Eric Christy

20

Duality averaging results for F_1 and F_L $\Delta Q^2 = +/- 0.75$

Good consistency with DIS and relatively smooth x dependence.
 Note different Q² dependence in averaged F_L from fit at lowest Q².

Summary

- \rightarrow Truncated moments indicate duality curve is not pure pQCD
 - => Indicates that average H-T is not canceling in resonances, but the average H-T is the same as DIS.

→ Duality averaging procedure developed to utilize Q^2 averages to Average over W^2 at fixed x.

=> Let data determine fit

 \rightarrow New 12 GeV Jlab data will allow for duality averages at larger Q²

Future Studies From E12-10-002

Future Studies From E12-10-002

Backup

Truncated Moment Analysis (NLO) of Hall C F₂ Data

• Assume data at highest Q² (25 GeV²) is entirely leading twist

• Evolve (target mass corrected fit) as **NS**, with uncertainty evaluated, from $Q^2 = 25 \text{ GeV}^2$ down to lower Q^2

A closer look at Res/DIS ratios ...

Averaging RR measurements for 0.65 < x < 0.75 gives nearly same F_1 and F_L as DIS!

...and Q^2 dependence at fixed x is the same.

How can we use this observation to determine **duality averaged data**?

28

JMU Duality Workshop, Eric Christy

F^p Data Sets

Data Set	Q^2_{Min}	x_{min}	Q^2_{Max}	x_{max}	# Data Points
	(GeV ⁻)		(GeV ⁻)		
BCDMS [1]	15	0.07	50	0.65	10
EMC [2]	15	0.041	90	0.369	28
NMC [3]	1.31	0.0045	20.6	0.11	10
SLAC (Whitlow [18])	0.63	0.1	20	0.86	90
SLAC (E140x [19])	0.5	0.1	3.6	0.50	4
H1 [?]	25	0.00062	90	0.0036	5
E99-118 [20]	0.273	0.077	1.67	0.320	7

Fit Form

$$F_{2,L}^{(0)}(x) = Ax^B (1-x)^C (1 + D\sqrt{x} + Ex),$$

 F_2 parameter Q^2 dependence

$$A(Q^2) = A_1 + A_2 e^{-Q^2/A_3} + A_4 \log(0.3^2 + Q^2)$$

29

Same form for A, B, C, D, and E JMU Duality Workshop, Eric Christy

First check Non-Singlet vs full evolution.

Evolve F_2 from MRST PDFs from $Q^2 = 25$ to 1 GeV² using both N-S and full (N-S + Singlet).

Largest difference for n=2 *moments*

~4% effect

Higher order (higher n) moments dominated by larger x (smaller W) regime

Recall - high W corresponds to low x - glue increasingly more important. **Becomes dominant**

E94-110: proton F_L in resonance region

- → First observation of quarkhadron duality in F_{L} .
- → TM corrections are critical Component of scaling function.
 - Duality is considerably broken for $Q^2 < 4$ without this contribution

To compared Data to QCD Moments using PDFs, must correct for known TM effects

In massless limit only operators with spin = n contributes to n^{th} Cornwall-Norton (CN) moments,

$$M_2^{(n)}(Q^2) = \int dx \, x^{n-2} F_2^{(0)}(x)$$
 $F_2^{(0)}$ Massless limit SF

This is **not** true for finite M^2/Q^2 . However,

$$\mu_2^n(Q^2) = \int_0^1 \mathrm{d}x \frac{\xi^{n+1}}{x^3} \left[\frac{3+3(n+1)r+n(n+2)r^2}{(n+2)(n+3)} \right] F_2^{\mathrm{TMC}}(x, Q^2)$$

projects out pure spin-n contribution - Nachtmann (1973)

Here F_2^{TMC} is the *experimental* structure functions.

For consistency, it should be true that $\mu_2^n (Q^2) = \int dx \, x^{n-2} F_2^{(0)}(x)$ JMU Duality Workshop, Eric Christy 32