

Duality in Semi-Inclusive Deep Inelastic Scattering

Edward R. Kinney, University of Colorado at Boulder with thanks to my collaborators *P. Bosted (William & Mary), R. Ent (Jefferson Lab), T. Horn (Catholic University of America), H. Mkrtchyan, V. Tadevosyan (Yerevan)*

- Brief review of high energy model of SIDIS
- Hadron vs quark pictures
- SIDIS Duality Results from E00-108
- Precision (e,e' π^{\pm}), (e,e'K[±]) cross sections at low P_{h⊥}
- Precision (e,e' π^0) cross sections at low $P_{h\perp}$
- L/T Separation of SIDIS (e,e'π[±]) cross section

High Energy Model of SIDIS

Flavor Decomposition of SIDIS

$$\frac{1}{\sigma_{(e,e')}} \frac{d\sigma}{dz} (ep \rightarrow hX) = \frac{\sum_{q} e_q^2 f_q(x) D_q^h(z)}{\sum_{q} e_q^2(x) f_q(x)}$$

 $f_q(x)$: parton distribution function $D_q^h(z)$: fragmentation function

- Leading-Order (LO) QCD
 after integration over p_{h⊥} and φ_h
 NLO: gluon radiation mixes

 x and z dependences

 Target-Mass corrections at large z
- In(1-z) corrections at large z

$$M_x^2 = W'^2 \sim M^2 + Q^2 (1/x - 1)(1 - z)$$

With p⊤ and k⊤ dependences, some kind of convolution is necessary to obtain final P_{h⊥}

Current vs Target?

P.J. Mulders, hep-ph/0010199 (EPIC Workshop, MIT, 2000)

- Strict application of Berger "criterion" will limit useful range of kinematics; can we push our understanding to develop a more sophisticated measure?
- How do we expand this picture to handle large p_T ?

E.R. Kinney

Duality in Meson Electroproduction

R. Ent Slide

SU(6) Model Expectation: Duality and factorization possible for $Q^2, W^2 \le 3$ GeV² (Close and Isgur, Phys. Lett. B509, 81 (2001))

E00-108 Duality Results

T. Navasardyan et al., PRL 98 022001 (2007)

- Cross section/simulation based on factorization prediciton
- Clear Duality at low z
- Delta Resonance at high z

How Can We Verify Factorization? R. Ent

Neglect sea quarks and assume no $p_{\rm t}$ dependence to parton distribution functions

 \rightarrow Fragmentation function dependence drops out in Leading Order

$$[\sigma_{p}(\pi^{+}) + \sigma_{p}(\pi^{-})] / [\sigma_{d}(\pi^{+}) + \sigma_{d}(\pi^{-})]$$

= [4u(x) + d(x)]/[5(u(x) + d(x))]

~
$$\sigma_{p}/\sigma_{d}$$
 independent of z and p_{t}
[$\sigma_{p}(\pi^{+}) - \sigma_{p}(\pi^{-})$]/[$\sigma_{d}(\pi^{+}) - \sigma_{d}(\pi^{-})$]

$$= [4u(x) - d(x)]/[3(u(x) + d(x))]$$

independent of z and p_t , but more sensitive to assumptions

What happened to the resonances?

Precision SIDIS in Hall C

- Using magnetic spectrometers one can explore the highest luminosities! Hall C has SHMS and HMS.
- Common pivot allows most precise L/T separations
- New Neutral Particle Spectrometer adds π⁰ capability with good acceptance.
- Precise cross sections/ratios for (e,e' π[±]) and (e,e' π⁰) measurements at DIS kinematics
- New cross sections/ratios for (e,e' K[±])
- First direct determination of L/T ratio for SIDIS cross sections!

E.R. Kinney

Precision (e,e'π[±]), (e,e'K[±]) cross sections at low P_{h⊥}

- Precision measurements to test the assumptions in factorization of SIDIS
- Explore assumptions of favored/disfavored fragmentation of different flavor quarks
- Look for target mass effects
- Higher twist effect
- Complementary to Hall B SIDIS measurements

Experiment E12-09-017

New experiment at 11 GeV: E12-09-17

- $W^2 = 5.08 \text{ GeV}^2$ and larger (up to 11.38 GeV^2)
- Use SHMS angle down to 5.5 degrees (for π detection) HMS angle down to 10.5 degrees (e⁻ detection) separation HMS-SHMS > 17.5 degrees
- $Mx^2 = Mp^2 + Q^2(1/x 1)(1 z) > 2.9 \text{ GeV}^2$ (up to 7.8 GeV^2)
- Improved coverage in all kinematic variables, especially ϕ and pt
- Choice to keep Q²/x fixed q_Y ~ constant (exception are data scanning Q² at fixed x)
- All kinematics both for π⁺ (and K⁺) and π⁻ (and K⁻), both for LH2 and LD2 (and Aluminum dummy)

Example of Expected Charged Kaon Precision

Quark-Hadron Duality Workshop 25 September 2018

E.R. Kinney

Precision (e,e'\pi^0) cross sections at low P_h

- Neutral pions are a good test and consistency check of flavor assumptions in extraction of TMDs with TM fragmentation
- Experimental measurement cleaner in terms of p (vector meson) contamination, exclusive pole contributions and hadron EM radiation effects
- Combined with charged pion/kaon data provides important constraint for analyzing future SIDIS experiments and TMD extraction

Experiment E12-13-007

Phl Coverage of SIDIS experiments

L/T Separation of SIDIS (e,e'π[±]) cross section

- All SIDIS flavor analyses assume a value of RsiDis = σL/σT as it has never been measured!
- Common assumption is Rsidis = Rdis
- How does Rsidis depend on *z*?
- How does Rsibis depend on hadron type?
- How does Rsidis depend on Ph⊥?
- Do we understand Q² dependence in SIDIS and in Exclusive $(z \rightarrow 1)$ regimes?
- Hall C spectrometers ideal for precise R measurement

Experiment E12-06-104

Expected R = $\sigma \sqcup / \sigma \intercal$ Results

Solid black points are simulation results; colored points are from 70's experiments at Cornell.

Hall C Kinematic Reach

Choice of Kinematics - cont.

R. Ent

Slide

Kin	×	Q ² (GeV ²)	Z	P _π (GeV)	Θ _π (deg)
Ι	0.2	2.0	0.3 -0.6	1.7 - 3.3	8.0 - 23.0
II	0.3	3.0	0.3 -0.6	1.7 - 3.4	5.5 - 25.5
III	0.4	4.0	0.3 -0.6	1.7 - 3.4	5.5 - 25.5
IV	0.5	5.0	0.3 -0.6	1.7 - 3.5	8.0 - 28.0
V	0.3	1.8	0.3 -0.6	1.1 - 2.1	8.0 - 30.5
VI	0.3	4.5	0.3 -0.6	2.5 - 5.0	5.5 - 20.5

Map of p_T dependence in x and z, in Q^2 to check (p_T/Q) and (p_T^2/Q^2) behavior

Kinematics I, II, III, and IV are identical to those where this collaboration also plans to map R (= σ_L/σ_T) in SIDIS in E12-06-104. These are the priority for 2017 run.

E12-09-017 Quasi-Online Results – Pions

not normalized by target density: just ratios of counts/mC corrected for computer dead time.

Timescales

- Charge pion, kaon measurements in 2018/2019
- Neutral pion measurements as soon as 2020
- R measurements to be scheduled after first commissioning Hall C measurements are analyzed in order to obtain the best accuracy

Summary

 E12-09-017, E12-13-007, and E12-06-104 will provide SIDIS charged pion+kaon data to allow tests of factorization and duality in meson electroproduction and will also explore new territory with (e,e'π⁰) and RsiDis measurements.