CTEQ-Jlab PDFs, structure functions at large x

Alberto Accardi

Hampton U. and Jefferson Lab

Quark Hadron Duality Workshop

James Madison U., 24 Sep 2018

Overview

The CJ15 global QCD analysis

Controlled PDFs and nuclear corrections at large x

Connection to quark-hadron duality

- What extrapolation curve should we use?
- How can we "test" duality?

Concluding thoughts

– What do we need to use duality to probe large x parton structure?

REFERENCES:

* Accardi, PoS DIS2015 (2015) 001 – "PDFs from protons to nuclei"

* Accardi et al, PRD 93 (2016) 114017 – the CJ15 global fit

The CJ15 global QCD analysis

The CTEQ-JLab global analysis

Collaborators:

- Theory: A. Accardi, W.Melnitchouk, J.Owens, N.Sato
- Experiment: E.Christy, C.Keppel, P.Monaghan

All-x PDF global fits, focused on the "large" x region

- Maximize use of large-x data (esp. DIS)
- Include all relevant large-x / small- Q^2 theory corrections
- Quantitatively evaluate theoretical systematic errors
- Use PDFs as tools for nuclear and particle physics

Latest public release: CJ15

- Accardi, Brady, Melnitchouk, Owens, Sato,

PRD 93 (2016) 114017

- www.jlab.org/cj
- Included in LHAPDF

35+ years of unpolarized global PDF fits

				_			Large-x treatment			
	JLab & BONUS	HER MES	HERA I+II	levatron new W,Z	LHC	ν+A di-μ	Nucl.	HT TMC	Flex d	low-W DIS
CJ15 *	√	\checkmark	\checkmark	\checkmark	in prog.	×	√ √	\checkmark	\checkmark	\checkmark
CT14			DIS 2016	🔨 дд	\checkmark	\checkmark			\checkmark	
MMHT14			XXX	🔨 дд	\checkmark	\checkmark	√			
NNPDF3.1			\checkmark		\checkmark	\checkmark		TMC only		
JR14	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		
ABMP16/17 **				V 🕅	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark		\checkmark
HERAPDF2.0			\checkmark	×						

* NLO only ** No jet data * see 1503.05221 *** see 1508.06621 ** no reconstructed W

A PDF landscape

Pert. order

Data coverage for PDF fits

Data coverage for PDF fits

Tevatron Jets

Data coverage for PDF fits

New in CJ15

s-ACOT scheme for heavy flavors

🗋 New data:

- BONUS spectator tagged DIS on neutrons
- HERA I+II combination
- HERMES F2
- High-statistics W-boson charge asymmetries from D0

New off-shell nucleon treatment in deuteron targets (DIS and DY)

- Parametrized vs. modeled \rightarrow absorbs wave function uncertainty
- Comparison to extraction from DIS on heavier targets

CJ15 - PDFs

Hessian error analysis

 Correlated errors where available

 \square Error bands displayed for $\Delta\chi^2 = 2.71$

(90% confidence level in a perfect, Gaussian world)

Fitted with $\chi^2/\text{datum} = 1.04$ LO fit much worse – cannot accommodate Q² dependence of data

Nuclear corrections

At large x, DIS dominated by incoherent scattering from individual nucleons

Offshell expansion; parametrize first order coefficient, x₁ fixed with valence sum rule

$$\widetilde{q}^{N}(x,p^{2}) = q^{N}(x) \left[1 + \frac{(p^{2} - M^{2})}{M^{2}} \, \delta q^{N}(x) \right]$$
$$\delta q^{N} = C_{N}(x - x_{0})(x - x_{1})(1 + x - x_{0}) \qquad \int_{0}^{1} dx \, \delta q^{N}(x) \Big(q^{N}(x) - \bar{q}^{N}(x) \Big) = 0$$

Tevatron as NUCL facility (!)

Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

Reconstructed W \rightarrow constrain *d***-quark at largest x** on proton targets

- \rightarrow constrain **deuteron corrections**
- → **precise** *u*, *d* flavor separation

Currently, mostly a **DØ vs. SLAC(d) interplay**

Tevatron as NUCL facility (!)

Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

Universal fit: d/u and binding effects

- \rightarrow confinement at large x (using flexible large-x d-quark)
- \rightarrow bound nucleon corrections in deuteron PDFs

Opens novel possibilities: test nuclear theory ideas against <u>other</u> data:

- Test "EMC effect" models (of course)
- On the lattice: "nucleon response to external color field"

Summary: controlled PDFs at large x

- **CJ15** provides the most controlled large-x PDF fit on the market
 - ABPM16 next-best choice / benchmark

Further progress needs precise nucleus-free "control observables"...

- W asymmetry: RHIC
- BoNus12, Marathon*, SoLID PVDIS
- …and more p, d DIS

JLab 12 - proton, deuteron structure functions

JLab 12 GeV

- More than double Q² range
- Similar precision as JLab 6 GeV (largely improve cf. SLAC)

Enters the EIC

Interpolates fixed target and HERA

- 💶 Large Q² leverage
 - More evolution at large x
 - Better separation of LT and HT
- ☐ High luminosity → large x capabilities → EIC2 project under way (Hobbs, AA, Furletova, Yoshida)

Unique at the EIC

"Easy" spectator tagging in DIS

- EIC Center at Jefferson Lab
- Quasi-free neutron targets; neutron tagging \rightarrow check vs real free p
- Strong PID capabilities $\rightarrow F_2^{c}, F_2^{cc}, ...$
- High luminosity \rightarrow CC, PVDIS \rightarrow d/u, strange quarks, dbar/ubar, ...
- Unpolarized & polarized scattering (also light ions)

Connections to Quark Hadron Duality

Structure functions for QHD studies

Question:

"What DIS \rightarrow resonance extrapolation curve should we use?"

- Answer: CJ15, of course!
- Provide a controlled extrapolation from pQCD regime
- Best available theory corrections: nuclear, HT, TMCs
- DIS data as close as possible to resonance region

CJ15 structure functions soon publicly available

- I can give you **F2 p, d, and n** right now
 - 3 sets: LT, with TMC+HT, fully corrected
- F2 uncertainties need some debugging
- FL, F3, PVDIS in "near future"
 - Help is very welcome!

Neutron DIS "data" for QHD studies

F2(neutron) extraction – with Shujie Li

- Take F2(p) and either F2(d), F2(d/p), or F2(n/d) data
- Apply CJ15 nuclear corrections
- Extract F2(n) or F2(n/p)

Neutron DIS "data" for QHD studies

F2(neutron) extraction – with Shujie Li

- Take F2(p) and either F2(d), F2(d/p), or F2(n/d) data
- Apply CJ15 nuclear corrections
- Extract F2(n) or F2(n/p)

 F_2^{p-n} v.s. x_{bj} (Q^2 rebinned)

Quark Hadron Duality – JMU – Sep 2018

Question:

What / how should we integrate?

– Region by region?

Question:

AA, AIP Conf.Proc. 1369 (2011) \rightarrow in collaboration with S.Malace

accardi@jlab.org

Quark Hadron Duality – JMU – Sep 2018

Question:

What / how should we integrate?

 Cut out data where struck quark "too close" to target remnant!

 $\Delta y \approx y_q - y_p = \ln \frac{2\sqrt{2}\nu}{\Omega} - \frac{1}{2}$

AA, AIP Conf.Proc. 1369 (2011)

Quark Hadron Duality – JMU – Sep 2018

Question:

To what extent does duality work?

What does "work" mean??

Global QCD analysis can help:

- Extensive old/recent/upcoming data in resonance region
- Average the way you want
- Calculate in pQCD (+TMC+HT+...) the same way
- Put in CJ15 fits:
 - Tension with higher Q2 DIS data?
 - Tension wit non-DIS data?
 - Do we need more theory input?
- Find what "works" and what does not

Concluding thoughts

A question (or two) to rule them all

U What do we need in order to use duality as a tool for large x ?

- A reliable extrapolation from DIS to resonance region

- Well constrained PDFs
- Evaluation of theoretical systematics
- Theory corrections to structure functions
- \rightarrow CJ15 fits the bill !
- Tests of duality
 - averaging procedures, regions of integrations
 - Right theory corrections, additional cuts (e.g., Berger criterion)
 - \rightarrow QCD global analysis as a tool

U What other questions do we need to ask to "understand" duality ?

Backup

NUCL / HEP symbiosis

Observable	Experiment	# points		χ^2		
			LO	NLO	NLO	NLO
					(OCS)	(no nucl)
DIS F_2	BCDMS (p) [81]	351	430	438	436	440
	BCDMS (d) [81]	254	297	292	289	301
	SLAC (p) [82]	564	488	434	435	441
	SLAC (d) [82]	582	396	376	380	507
DIS F_2 tagged	Jefferson Lab $\left(n/d\right)$ [21]	191	218	214	213	219
W/charge asymmetry	CDF(e)[88]	11	11	12	12	13
	DØ (μ) [17]	10	37	20	19	29
	DO(e) [18]	13	20	29	29	14
	CDF(W)[89]	13	16	16	16	14
	DØ(W)[19]	14	39	14	15	82
Z rapidity	CDF(Z)[90]	28	100	27	27	26
	DO(Z) [91]	28	25	16	16	16
					-	
$\chi^2/{ m datum}$			1.33	1.04	1.04	1.09

NUCL / HEP symbiosis

Observable	Experiment	# points		χ^2		
			LO	NLO	NLO	NLO
					(OCS)	(no nucl)
DIS F_2	BCDMS (p) [81]	351	430	438	436	440
	BCDMS (d) [81]	254	297	$\boldsymbol{292}$	289	301
	SLAC (p) [82]	564	488	434	435	441
	SLAC (d) [82]	582	396	376	380	507
DIS F_2 tagged	Jefferson Lab $\left(n/d\right)$ [21]	191	218	214	213	219
W/charge asymmetry	CDF(e)[88]	11	11	12	12	13
	DØ (μ) [17]	10	37	20	19	29
	DO(e) [18]	13	20	29	29	14
	CDF(W)[89]	13	16	16	16	14
	DO(W) [19]	14	39	14	15	82
Z rapidity	CDF(Z)[90]	28	100	27	27	26

- Ignoring nuclear dynamics, SLAC(d) and D0(W) pull d quark in opposite directions
 - D0 (W) data determine nuclear corrections !!
 - other asymmetries inconclusive by themselves
 - BONUS data validate DO(W) analysis

Example 2: strange strange quarks

Quark Hadron Duality – JMU – Sep 2018

Example 2: strange strange quarks

Appendix: Nuclear corrections

Nuclear physics output

Compare to Kulagin-Petti fit to e+A collisions

- Same functional form (but different normalization)

Different shape and size

- \rightarrow no nuclear universality ?? δf_N
- \rightarrow too hard nuclear spectral function at large momentum ??
- \rightarrow ???

accardi@jlab.org

Nuclear corrections...

Ehlers, AA, Brady, Melnitchouk, PRD90 (2014)

Off-shell corrections help makes dbar-ubar stay positive

accardi@jlab.org

Future DY reaches into large-x

Ehlers, AA, Brady, Melnitchouk, PRD90 (2014)

E906/Sea Quest: off-shell effects even more important

J-PARC: can cross-check nuclear smearing vs. DIS

Appendix: Large-x data

New Large-x data: a partial list

DIS data minimally sensitive to nuclear corrections

- DIS with slow spectator proton (BONUS / BONUS 12)
 - Quasi-free neutrons
- ³He/³H ratios (Marathon)

Data on free (anti)protons, sensitive to dHERA (e^+ vs. e^-), EIC, LHeC

- *e+p*: parity-violating DIS
- v+p, v+p : ShiP, ELBNF Near Detector, MINERvA
- *p+p, p+p* at large positive rapidity
 - W charge asymmetry, Z rapidity distribution

🗋 "Drell-Yan" data

- Dimuons: E906, J-PARC (?)
- *p+d* at large <u>negative</u> rapidity dileptons; *W*, *Z*
 - Sensitive to nuclear corrections, cross-checks e+d

LHCb(?) RHIC !! AFTER@LHC

AFTER@LHC

RHIC??

At the EIC

Neutral current DIS

- MEIC $\sqrt{s} = 31 \text{ GeV}$ (ca. 2010)
- Pseudo data using "CTEQ6X" fits, L=230 (35) fb⁻¹

At the EIC

Charged current DIS

- plot for polarized scattering, similar for unpolarized
- Not optimized at large-x: likely to add a bin around x = 0.85

[Aschenauer et al, 2013]

Constraints from the LHC: Electroweak Boson Production

Structure functions for QHD studies

Question:

"What DIS \rightarrow resonance extrapolation curve should we use?"

- CJ15, of course!
- Provides a controlled extrapolation from pQCD regime
- Includes the best available theory corrections: nuclear, HT, TMCs

CJ15 structure functions soon publicly available

- I can give you **F2 p, d, and n** right now
 - 3 sets: LT, with TMC+HT, fully corrected
- F2 uncertainties need some debugging
- FL, F3, PVDIS in "near future"
 - Help is very welcome!