Meson production in ultra-peripheral heavy ion collisions

C.A. Bertulani

C.A. Bertulani, 8th Workshop of the APS Topical Group on Hadronic Physics, April 11, 2019

Collaboration

Gerhard Baur KFA-Juelich

Fernando Navarra Univ. Sao Paulo

Victor Goncalves U Rio Grande do Sul

Adeola Adeluyi Texas A&M-Commerce

Michael Murray Univ. of Kansas

Spencer Klain Berkeley Lab

James Thomas Texas A&M-Commerce

Mark Ellermann Texas A&M-Commerce

Pair Production with Capture

The New York Times

U.S.

N.Y. / REGION

Physicists Manage to Create The First Antimatter Atoms

By MALCOLM W. BROWNE Published: January 5, 1998

1996

and

Virtual

photons,

antiatoms,

the public

WORLD

But the neutrality of antihydrogen, like that of ordinary hydrogen, renders it impossible to contain or manipulate using magnetic fields. Moreover, an antiatom cannot be contained in an ordinary vessel, since the slightest contact with the container's wall causes it to annihilate. Consequently, other groups are developing enormously

sophisticated methods, including interacting lasers, to manipulate and secure antiparticles inside vacuum chambers.

SINGLE-PAGE
G SAVE
+ SHARE

Production of Exotic Atoms

Bertulani, Ellermann, PRC 81, 044910 (2010)

Production of Exotic Atoms

Bertulani, Ellermann, PRC 81, 044910 (2010)

"Exotic" atom	рр	PbPb
Hydrogen	63.4	132 b
muonic	44.8 $\times 10^{-4}$	0.16 mb
pionic	21.3×10^{-4}	0.09 mb
kaonic	1.3×10^{-4}	4.3 µb
ρ atom	0.51×10^{-4}	1.3 µb
protonium	0.09×10^{-4}	0.5 µb

Cross sections for production of exotic atoms in pp and PbPb collisions at the CERN Large Hadron Collider (LHC).

Example: parapositronium (S = 0) and orthopositronium (S = 1)

Study of positronium propagation in thin metals: QFT for bound states

QFT with bound states

$$\sigma_{X} = \int d\omega_{1} d\omega_{2} n_{\gamma}(\omega_{1}) n_{\gamma}(\omega_{2}) \sigma_{\gamma\gamma}^{X}(\omega_{1}\omega_{2}s)$$

$$n(\omega,b) = \frac{2Z^2 \alpha \omega^2}{\pi \gamma^2} \int_0^\infty db \, b \left[K_1^2(\xi) + \frac{1}{\gamma^2} K_0^2(\xi) \right] \exp\left\{ -\sigma_{NN} \int_{-\infty}^\infty dz' \int d^3r \, \rho(\mathbf{r}) \rho(\mathbf{r'} - \mathbf{r}) \right\}$$

No need for minimum impact parameter

For meson production at CERN use above in conjunction with

Low, Phys. Rev. 120, 582 (1960)

$$\sigma_{\gamma\gamma}^{X}(x_{1}x_{2}s) = 8\pi^{2}(2J+1)\frac{\Gamma_{m_{X} \rightarrow \gamma\gamma}}{m_{X}}\delta(x_{1}x_{2}s-m_{X}^{2})$$

Testing widths of various mesons at LHC

Bertulani, PRC 79, 047901 (2009)

	JPC	$\Gamma_{\gamma\gamma}^{th}$ (keV)	$\Gamma_{\gamma\gamma}^{exp}$ (keV)	Cross section (mb)
π_0	(0-+)	3.4 – 6.4 x 10 ⁻³	$8.4 \pm 0.6 \text{ x } 10^{-3}$	27 – 52
π (1300)	(0-+)	0.43 - 0.49	unknown	0.69 - 0.71
π (1880)		0.74 - 1.0	unknown	0.8 - 1.1
π ₂ (1670)	(2-+)	0.11 - 0.27	< 0.072	0.41 – 1.1
π ₂ (2130)	(2-+)	0.10 - 0.16	unknown	0.36 - 0.54
π ₂ (2330)		0.21 – 1.6	unknown	0.04 - 0.31

Needs a dedicated experimental collaboration

Testing widths of various mesons at LHC

Bertulani, PRC 79, 047901 (2009)

Mesons	$J^{ m PC}$	$\Gamma^{\rm th}_{\gamma\gamma}$ (keV)	$\Gamma^{\exp}_{\gamma\gamma}$ (keV)	Obs.	$\sigma^X_{\gamma\gamma}$
$a_0^{K\bar{K}}$ (980)	(0++)	0.6	0.30 ± 0.10	$\longrightarrow K\bar{K} \longrightarrow \gamma\bar{\gamma}$	3.1mb
$a_0^{q\bar{q}}$ (980)		1.5		Hypothetical, NR q-model	8.6 mb
$a_0^{q\bar{q}}$ (980)		1.0		Hypothetical, R q-model	5.5 mb
$f_0^{K\bar{K}}$ (980)	(0^{++})	0.6	$0.29\substack{+0.07\\-0.09}$	$\longrightarrow K\bar{K} \longrightarrow \gamma\bar{\gamma}$	3.1 mb
$f_0^{qar{q}}$ (980)		4.5		Hypothetical, NR q-model	25.8 mb
$f_0^{q\bar{q}}$ (980)		2.5		Hypothetical, R q-model	14.3 mb
$f_0(1200)$		3.25-6.46	Unknown	For $m_q = 0.33$ to 0.22 GeV	9.6–21 mb
$f_2(1274)$	(2^{++})	1.75-4.04	2.6 ± 0.24	$\Gamma_{\gamma\gamma}(f_0)/\Gamma_{\gamma\gamma}(f_2) = 1.86-1.60$	21–49 mb
$f_2^{\lambda=2}$ (1274)		1.71-3.93		$(\lambda = 0) / (\lambda = 2) = 0.022 - 0.029$	20–44 mb
$f_2^{\lambda=0}$ (1274)		0.04-0.11			0.09–0.23 mb
f_0 (1800)		2.16-2.52	Unknown	$2^{3}P_{0}$ radial excitation	2.5–3.1 mb
$f_2(1800) (\lambda = 2)$		1.53-2.44		$2^{3}P_{2}$ radial excitation	1.7–2.9 mb
$f_2(1800) (\lambda = 0)$		0.08-0.16		"	0.08–14 mb
$f_2(1525)$	(2^{++})	0.17	0.081 ± 0.009	$s\overline{s}, m_s = 0.55 \text{ GeV fixed}$	0.86 mb
$f_{2}'(1525)(\lambda = 0)$		0.065		"	0.21 mb
$f_2'(1525)(\lambda = 2)$		0.9×10^{-3}		"	$0.42~\mu b$
f_4 (2050)		0.36-1.76	Unknown	${}^{3}F_{4}$	0.03–0.14 mb
$f_4(2050)(\lambda = 2)$		0.33-1.56		"	0.02–0.13 mb
$f_4(2050)(\lambda = 0)$		0.03-0.20		"	2–12 µb
$f_3(2050)$		0.50-2.49	Unknown	${}^{3}F_{3}$	0.03–0.13 mb
$f_2(2050)$		2.48-11.11	Unknown	${}^{3}F_{2}$	0.12–0.53 mb
$f_2(2050)(\lambda = 2)$		1.85-8.49		"	0.09–0.46 mb
$f_2(2050)(\lambda = 0)$		0.63-2.62		"	0.01–0.07 mb
$f_0^{K^*K^*} (\simeq 1750)$		\simeq 0.05–0.1	Unknown	Vector-vector molecule	0.19 mb

Testing widths of various mesons at CERN

Mesons	$J^{ m PC}$	$\Gamma^{\rm th}_{\gamma\gamma}$ (keV)	$\Gamma^{\exp}_{\gamma\gamma}$ (keV)	Obs.	$\sigma^X_{\gamma\gamma}$
$\overline{\eta_c}$	(0^-+)	3.4-4.8	$6.7^{+0.9}_{-0.8}$	$m_c = 1.4 - 1.6 \text{ GeV}$	0.26–0.34 mb
$\eta_{c}(3790)$		1.85-8.49	1.3 ± 0.6	$m_c = 1.4 \text{ GeV}$	0.06–0.1 mb
$\eta_{c}'(3790)$		3.7	Unknown	$m_c = 1.4 \text{ GeV}$	0.11 mb
$\eta_{c}(4060)$		3.3	Unknown		0.09 mb
$\eta_{c2}^{1D}(3840)$		$20. \times 10^{-3}$	Unknown		0.15 μb
$\eta_{c2}^{2D}(4210)$		35. × 10^{-3}	Unknown		0.14 <i>µ</i> b
$\eta_{c4}^{1G}(4350)$		0.92×10^{-3}	Unknown		$0.08~\mu b$
χ2	(2^{++})	0.56	0.258 ± 0.019	$\left(\lambda=2\right)/\left(\lambda=0\right)=0.005$	82 µb
χο	(0^{++})	1.56	0.276 ± 0.033	$\Gamma_{\gamma\gamma}(\chi_0)/\Gamma_{\gamma\gamma}(\chi_2)=2.79$	0.05 mb
χ'_2	(2^{++})	0.64	Unknown		0.09 mb
$h_{c2}(3840)$		20×10^{-3}	Unknown	$^{1}D_{2}$	$82 \ \mu b$
χ ₂ (4100)		30×10^{-3}	Unknown	${}^{3}F_{2}$	0.11 µb
Mesons	$J^{ m PC}$	$\Gamma^{\rm th}_{\gamma\gamma}$ (keV)	$\Gamma^{\exp}_{\gamma\gamma}$ (keV)	Obs.	$\sigma^X_{\gamma\gamma}$
$\eta_b^{1S}(9400)$		0.17×10^{-3}	Unknown		19 nb
$\eta_b^{2S}(9400)$		0.13×10^{-3}	Unknown		16 nb
$\eta_b^{3S}(9480)$		0.11×10^{-3}	Unknown		14 nb
$\eta_{b2}^{1D}(10150)$		$33. \times 10^{-6}$	Unknown		0.4 nb
$\eta_{b2}^{2D}(10450)$		$69. \times 10^{-6}$	Unknown		0.8 nb
$\eta_{b4}^{1G}(10150)$		59. × 10^{-6}	Unknown		0.7 nb
$\eta_{b}(9366)$	(0^{-+})	0.17	Unknown		$0.12~\mu b$
η_b'		0.13	Unknown		$0.17~\mu b$
η_b''		0.11	Unknown	$s\overline{s}, m_s = 0.55 \text{ GeV}$ fixed	$1 \qquad 0.15 \ \mu b$
$\chi_{b2}(9913)$	(2^{++})	3.7×10^{-3}	Unknown		$0.09~\mu b$
$\chi_{b0}(9860)$	(0^{++})	$13. \times 10^{-3}$	Unknown		$0.08~\mu b$

Parton Distribution Functions (PDFs)

• HERA: $W_{\gamma p} \sim 200 \text{ GeV}$ LHC: $W_{\gamma p} \sim 1 \text{ TeV}$

Gonçalves, Bertulani, PRC 65, 054905 (2002)

$$\sigma_{\gamma g \to q \overline{q}}(s) = \int_{2m_c}^{\sqrt{s}} dM_{q \overline{q}} \frac{d\sigma_{\gamma g \to q \overline{q}}}{dM_{q \overline{q}}} G_N(x, \sqrt{M_{q \overline{q}}})$$

For heavy quarks the photoproduction can be described using perturbative QCD,

$$\frac{d\sigma_{\gamma g \to q\bar{q}}}{dM_{q\bar{q}}} = \frac{4\pi\alpha\alpha_{s}e_{c}^{2}}{M_{q\bar{q}}^{2}} \left[\left(1+\epsilon-\frac{1}{2}\epsilon^{2}\right) \ln\left(\frac{1+\sqrt{1-\epsilon}}{1-\sqrt{1-\epsilon}}\right) - \left(1+\epsilon\right)\sqrt{1-\epsilon} \right]$$

Glueck, Reya, Phys. Lett. 79, 453 (1978)

$$\epsilon = \frac{4m_q^2}{M_{q\overline{q}}^2}$$

Parton Distribution Functions (PDFs)

$$\sigma \left(AA \rightarrow XXq\overline{q} \right) = \int \frac{d\omega}{\omega} n(\omega) \otimes \sigma_{\gamma g \rightarrow q\overline{q}} \otimes xG_A(x,Q^2)$$

$$\gamma_{\rm c} = 2\gamma_{\rm lab}^2 - 1$$

Bjorken
$$x = \frac{M}{2p}e^{-y} << 1$$

No medium corrections

$$xG_A(x,Q^2) = A \otimes xG_N(x,Q^2)$$

medium corrections

$$xG_A(x,Q^2) = R_G \otimes xG_N(x,Q^2)$$

Uncertainties in PDFs

Thomas, Bertulani, Brady, Clark, Godat, Olness. ArXiv:1603.01919

Parton Distribution Functions (PDFs)

Energy dependence of the photoproduction of heavy quarks for distinct nuclear gluon distributions (A = 208).

- EKS = Eskola, Kolhinen, Salgado, EPJ. C9, 61 (1999)
- AG = Ayala, Gonçalves, EPJ. C 20, 343 (2001)
- GRV = Glück, Reya, Vogt, Z. Phys. C67, 433 (1995)

Parton Distribution Functions at LHC

Rapidity distribution for the photoproduction of charm quarks in ²⁰⁸Pb + ²⁰⁸Pb collisions at the LHC.

- EKS = Eskola, Kolhinen, Salgado, EPJ. C9, 61 (1999)
- AG = Ayala, Gonçalves, EPJ. C 20, 343 (2001)
- GRV = Glück, Reya, Vogt, Z. Phys. C67, 433 (1995)

Resolved Photons

$$\sigma(AA \to XXq\overline{q}) = \int \frac{d\omega}{\omega} n(\omega) \otimes x_{\gamma} G_{\gamma}(x_{\gamma}, Q^{2})$$
$$\otimes \sigma_{gg \to q\overline{q}} \otimes x G_{A}(x, Q^{2})$$

Glück, Owens, Reya, PRD 17, 2324 (1978)

$$\sigma_{gg \to q\bar{q}}(\hat{s}) = \frac{\pi \alpha_s^2 \left(Q^2\right)}{3\hat{s}} \left[\left(1 + \epsilon + \frac{\epsilon^2}{16}\right) \ln \left(\frac{1 + \sqrt{1 - \epsilon}}{1 - \sqrt{1 - \epsilon}}\right) - \left(\frac{7}{4} + \frac{31}{16}\epsilon\right) \sqrt{1 - \epsilon} \right]$$

Resolving resolved photons

Rapidity distribution for the photoproduction of charm quarks in 208 Pb + 208 Pb collisions at LHC with (GRV+RES) and without (GRV) the inclusion of the resolved contribution.

Energy dependence of the elastic photoproduction of J/ψ for distinct nuclear gluon distributions (A = 208).

Nuclear modification of PDFs

Adeluyi, Bertulani, PRC84, 024916 (2011)

$$\begin{split} &\sigma\left(AA \rightarrow XXq\overline{q}\right) = \int \frac{dn}{d\omega} \left(\omega\right) \otimes \sigma_{\gamma g \rightarrow q\overline{q}} \otimes xG_A\left(x,Q^2\right) \\ &xG_A\left(x,Q^2\right) = R_G \otimes xG_N\left(x,Q^2\right) \\ &x \leq 0.04, \quad R_G < 1 \qquad \text{shadowing} \\ &0.04 \leq x \leq 0.3, \quad R_G > 1 \qquad \text{anti-shadowing} \\ &0.3 \leq x \leq 0.8, \quad R_G < 1 \qquad \text{EMC effect} \\ &x > 0.8, \quad R_G > 1 \qquad \text{Fermi motion} \end{split}$$

- EPS08
- EPS09
- 8 = Eskola, Paukunnen, Salgado, JHEP 07, 102 (2008)
 - = Eskola, Paukunnen, Salgado, JHEP 04, 065 (2009)
- MSTW08 = Martin, Stirling, Thorne, Watts, EPJ C 63, 189 (2009) ($R_G \sim 1$)
- HKN07 = Hirai, Kumano, Nagai, PRC 76, 065207 (2007)

Nuclear modification of PDFs

- EPS08
- EPS09
- = Eskola, Paukunnen, Salgado, JHEP 07, 102 (2008)
 = Eskola, Paukunnen, Salgado, JHEP 04, 065 (2009)
- HKN07 = Hirai, Kumano, Nagai, PRC 76, 065207 (2007)

Nuclear modification of PDFs

Cross section for photoproduction of J/ ψ (Y) as a function of energy $W_{\nu p}.$

 $m_{J/\psi}$

Nuclear modification of PDFs in cc production

Total rapidity distributions of the photoproduction of cc in Pb-Pb collisions at the LHC.

Nuclear modification of PDFs in bb production

Total rapidity distributions of the photoproduction of bb in Pb-Pb collisions at the LHC.

Nuclear modification of PDFs in qq-bar prod.

Gluon distribution	$Q^2 = s$ (mb)	$Q^2 = 4m_c^2$ (mb)
MST08	1170	1090
EPS08	890	780
EPS09	1000	910
HKN07	1080	1000

Total cross sections for direct photoproduction of c<u>c</u> in ultraperipheral Pb-Pb collisions at the LHC.

Gluon distribution	$Q^2 = s$ (mb)	$Q^2 = 4m_b^2$ (mb)
MST08	6.2	7.0
EPS08	5.8	6.2
EPS09	6.0	6.6
HKN07	6.1	6.7

Total cross sections for direct photoproduction of b<u>b</u> in ultraperipheral Pb-Pb collisions at the LHC.

Nuclear modification of PDFs at the LHC

Gluon distribution	LO (mb)	Scaled LO (mb)
MST08	260	74
EPS08	36	10
EPS09	101	29
HKN07	173	49

Total cross sections for elastic photoproduction of J/ψ in ultraperipheral Pb-Pb collisions at the LHC.

Gluon distribution	Cross section (µb)
MST08	189
EPS08	99
EPS09	130
HKN07	146

Total cross sections for elastic photoproduction of $\Upsilon(1s)$ in ultraperipheral Pb-Pb collisions at the LHC.

 $\alpha \left[\left(\begin{array}{cc} 2\omega \end{array} \right)^2 \right] \left(\begin{array}{cc} 1 & 11 & 3 \end{array} \right)$

Adeluyi, Bertulani, PRC85, 044904 (2012)

dn

Adeluyi, Bertulani, Murray, PRC86, 047901 (2012)

> Drees, Zeppenfeld, PRD 39. 2536 (1989)

$$\frac{1}{d\omega} = \frac{1}{2\pi\omega} \left[1 + \left(1 - \frac{1}{\sqrt{s_{NN}}} \right) \right] \left[\ln D - \frac{1}{6} + \frac{1}{D} - \frac{1}{2D^2} + \frac{1}{3D^3} \right] = 1 \text{ Id} So, 2000 \text{ (respectively observed on the set of t$$

3

Combridge, Nucl. Phys. B 151, 429 (1979)

Photon PDFs for resolved interactions:

• GRV = Glück, Reya, Vogt, Phys. Rev. D 46, 1973 (1992)

- /

- SaS1d = Schuler, Sjostrand, Z. Phys. C 68, 607 (1995)
- CJK2 = Cornet, Jankowski, Krawczyck, Acta Phys. Pol. B 35, 2215 (2004)

	PDF	direct	Resolved		
			SaS1d	GRV	CJK
γp	MSTW08	5570	692	1157	1418
	MSTW08	607	114	195	228
γA	EPS08	376	95	164	187
	EPS09	471	103	177	204

Cross sections for photoproduction of c<u>c</u> in ultraperipheral pPb collisions at the LHC. All cross sections are in **microbarns (µb)**.

PDF	direct	Resolved		
		SaS1d	GRV	CJK
MSTW08	1167	110	180	226
EPS08	890	104	172	213
EPS09	1002	106	176	219

Cross sections for photoproduction of c<u>c</u> in ultraperipheral PbPb collisions at the LHC. All cross sections are in **millibarns (mb)**.

Rapidity distributions of c<u>c</u> photoproduction in pPb collisions at the LHC using the GRV photon parton distributions. (a) γp and γPb contributions to total rapidity distributions. Dotted line is the γp contribution, while the dashed (MSTW08), solid (EPS09), and dash-dotted (EPS08) lines correspond to γPb contributions. (b) Total rapidity distributions (sum of γp and γPb contributions).

Total rapidity distributions of the photoproduction of cc in PbPb collisions at the LHC using the GRV photon PDFs. Dashed line uses the MSTW08 gluon distribution. Solid and dash-dotted lines uses nuclear-modified gluon distributions from EPS09 and EPS08.

	PDF	direct	Resolved		
			SaS1d	GRV	CJK
γp	MSTW08	36512	8641	112178	114977
	MSTW08	5084	2061	3032	3663
γA	EPS08	3972	1936	2872	3451
	EPS09	4409	1988	2942	3543

Cross sections for photoproduction of b<u>b</u> in ultraperipheral pPb collisions at the LHC. All cross sections are in **nanobarns (nb)**.

PDF	direct	Resolved		
		SaS1d	GRV	CJK
MSTW08	6227	1076	1468	1800
EPS08	5812	1097	1516	1867
EPS09	5992	1085	1496	1842

Cross sections for photoproduction of b<u>b</u> in ultraperipheral PbPb collisions at the LHC. All cross sections are in **microbarns (µb)**.

pA versus AA collisions

Total rapidity distributions of bb photoproduction in PbPb collisions at the LHC using the GRV photon PDF. Dashed line uses the MSTW08 gluon distribution (no nuclear modifications). Solid and dash-dotted lines uses nuclear-modified distributions from EPS09 and EPS08.

	γр	γA	total
MSTW08	167.3	23.6	190.9
EPS08		2.2	169.5
EPS09		8.5	175.8
HKN07		15.4	182.7

Cross sections (in μ b) for elastic photoproduction of J/ ψ in ultraperipheral pPb collisions at the LHC. Second and third columns are the contributions from γ p and γ Pb. The sums of the two contributions are presented in the fourth column.

	Cross section (µb)
MSTW08	74
EPS08	10
EPS09	29
HKN07	49

Total cross sections (in mb) for elastic photoproduction of J/ψ in ultraperipheral PbPb collisions at the LHC.

Rapidity distributions of exclusive photoproduction of J/ ψ in pPb collisions at the LHC. (a) The γp and γPb contributions to total rapidity distributions. Dotted line depicts the γp contribution while the dashed (MSTW08), dash double- dotted (HKN07), solid (EPS09), and dash-dotted (EPS08) lines correspond to γPb contributions with no shadowing, weak shadowing, moderate shadowing, and strong shadowing, respectively. (b) Total rapidity distributions (sum of γp and γPb contributions).

Total rapidity distributions of exclusive photoproduction of J/ψ in PbPb collisions at the LHC. Dashed line uses the MSTW08 gluon distribution. Solid, dash-dotted, and dash-double-dotted lines are results from nuclear-modified gluon distributions from EPS09, EPS08, and HKN07. 36

	γр	γA	Total nb
MSTW08	390	219	609
EPS08		84	474
EPS09		130	520
HKN07		161	551

Total cross sections **(in nb)** for elastic photoproduction of $\Upsilon(1s)$ in ultraperipheral pPb collisions at the LHC. Second and third columns are the contributions from γp and γPb . The sums of the two contributions are presented in the fourth column.

	Cross section pb
MSTW08	189
EPS08	99
EPS09	130
HKN07	146

Total cross sections (in μb) for elastic photoproduction of $\Upsilon(1s)$ in ultraperipheral PbPb collisions at the LHC.

Rapidity distributions of exclusive photoproduction of $\Upsilon(1s)$ in pPb collisions at the LHC. In (a) we show the γp and γPb contributions to total rapidity distributions. Dotted line depicts the γp contribution while the dashed (MSTW08), dash double-dotted (HKN07), solid (EPS09), and dash-dotted (EPS08) lines correspond to γPb contributions with no shadowing, weak shadowing, moderate shadowing, and strong shadowing, respectively. In (b) we present total rapidity distributions (sum of γp and γPb contributions).

Total rapidity distributions of exclusive photoproduction of $\Upsilon(1s)$ in PbPb collisions at the LHC in the modified hard sphere density distribution approximation. Dashed line uses the MSTW08 gluon distribution. Solid, dash-dotted, and dash-double-dotted lines uses nuclear-modified gluon distributions from EPS09, EPS08, and HKN0.

PDFs at the LHC

Comparison among the published value of the cross section at forward rapidity, the result at central rapidities and several theoretical models. The error is the quadratic sum of the statistical and systematic errors.

Tetraquarks

Matheus, Navarra, Nielsen, Zanetti, PRD 80, 056002 (2009) Charmonium-molecule = χ'_{c1} + D-<u>D</u>*, with (28%–44%) c<u>c</u>

Ce Meng, Hao Han, Kuang-Ta Chao, PRD 96, 074014 (2017)

Moreira, Bertulani, Goncalves, Navarra, PRD 94, 094024 (2016) Eur. Phys. J. 137, 06019 (2017)

or

meson molecule ?

Tetraquarks

Moreira, Bertulani, Goncalves, Navarra, PRD 94, 094024 (2016) Eur. Phys. J. 137, 06019 (2017)

\rightarrow

State

X(3940), 0⁺⁺

X(3940), 2⁺⁺

 $X(4140), 0^{++}$

 $X(4140), 2^{++}$

 $Z(3930), 2^{++}$

 $X(4160), 2^{++}$

 $Y_p(3912), 2^{++}$

 $X(3915), 0^{++}$

Measurement can help contrain which configuration (tetraquark or molecule) through $\Gamma_{\gamma\gamma}$

Mass

3943

3943

4143

4143

3922

4169

3919

3919

Summary

- LHC looks for physics beyond the SM
- LHC can be very useful for complementary studies, e.g. $\gamma^* + \Lambda \rightarrow \Sigma^0$ and Σ^0 lifetime
 - antihydrogen (CERN 1996)
 - multiphonon giant resonances (RHIC, CERN)
 - alternatives for nuclear astrophysics (everywhere but LHC)
 - QFT of bound states (nowhere)
 - PDFs (RHIC, LHC)