Studying the hadronic and semi-leptonic Decay Modes of

 the $\eta^{(1)}$-Meson with GlueX-IDaniel Lersch

Florida State University
11.04.2019

The $\eta^{(\prime)}$-Trinity

- Isospin Violation
- Quark Mass Ratio

- Quantum Anomalies
- FSI

The GlueX Experiment

- Completed data taking phase I in fall 2018:

Run Period	Luminosity $\left[\mathrm{pb}^{-1}\right]$
2016	10
2017	45
2018	150

- Continue data taking with DIRC upgrade and high intensity beam in fall 2019

System	Isospin State $\left\|I, I_{\boldsymbol{z}}\right\rangle$	C-Eigenvalue	G-Eigenvalue
η	$\|0,0\rangle$	+1	+1
$\left(\pi^{+} \pi^{-} \pi^{0}\right)$	$\|0,0\rangle$	-1	-1
$\left(\pi^{+} \pi^{-} \pi^{0}\right)$	$\|1,0\rangle$	+1	-1

- Decay $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is G-violating \Rightarrow Forbidden to first order
- Decay is driven by isospin breaking part of strong interaction
$\Rightarrow C$ is conserved
- Decay width: $\Gamma \propto Q^{-4}$
with: $Q^{2}=\left(\frac{m_{s}}{m_{d}}\right)^{2} \times\left[1-\left(\frac{m_{u}}{m_{d}}\right)^{2}\right]^{-1}$
\Rightarrow Determine decay width $\Gamma \Rightarrow$ Access to quark mass ratio

$$
\Downarrow
$$

a) Measure $\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{\mathbf{0}}\right)$, e.g. via $\frac{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{\mathbf{0}}\right)}{\Gamma(\eta \rightarrow \gamma \gamma)}$
b) Dalitz Plot Analysis

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz Plot Analysis

- Parameterize decay width Γ :

$$
\frac{d^{2} \Gamma}{d X d Y} \propto\left(1+a Y+b Y^{2}+c X+d X^{2}+e X Y+f Y^{3}+g X^{2} Y+\cdots\right)
$$

- With dimensionless variables:
$X=\sqrt{3}\left(T_{\pi^{+}}-T_{\pi^{-}}\right) / \Sigma_{T} \rightarrow$ Sensitive to charge conjugation
$Y=3 T_{\pi^{0}} / \Sigma_{T}-1$
- Results from KLOE: kLoe coll., JHEP, 019, (2016)
i) η-Mesons produced via: $e^{+} e^{-} \rightarrow \Phi \rightarrow \eta \gamma$
ii) $\approx 4.7 \mathrm{M} \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz Plot Analysis

- Parameterize decay width Γ :

$$
\frac{d^{2} \Gamma}{d X d Y} \propto\left(1+a Y+b Y^{2}+c X+d X^{2}+e X Y+f Y^{3}+g X^{2} Y+\cdots\right)
$$

- With dimensionless variables:

$$
\begin{aligned}
& X=\sqrt{3}\left(T_{\pi^{+}}-T_{\pi^{-}}\right) / \Sigma_{T} \rightarrow \text { Sensitive to charge conjugation } \\
& Y=3 T_{\pi^{0}} / \Sigma_{T}-1
\end{aligned}
$$

- Results from WASA-at-COSY: wAsA-at-cosY coll., Phys. Rev., C90(045207), (2014)
i) η-Mesons produced via: $p d \rightarrow{ }^{3} \mathrm{He} \eta$
ii) $\approx 120 \mathrm{k} \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Recent Results

- Partial wave analysis performed by JPAC:

WASA-at-COSY: $Q=21.4 \pm 1.1^{(e)}$ ($\sim 120 \mathrm{k}$ events)
KLOE: $Q=21.7 \pm 1.1^{(g)}\left(\sim 4.7 \cdot 10^{6}\right.$ events)

- CLAS6 Dalitz Plot analysis on g12 data ongoing
- Perform Dalitz Plot Analysis with GlueX-I Data
1.) $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
2.) $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Status GlueX-I Data Analysis

Global Bin Number

- $\approx 300 \mathrm{k} \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events reconstructed in 2017 data set
- No asymmetry observed: c, e (and h) are consistent with 0
- Dalitz Plot analysis for GlueX-I 2018 data set ongoing

$\eta^{(1)} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$Box Anomaly, FSI and CP-Violation

Underlying decay: $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} \gamma$

- Wess-Zumino-Witten-Lagrangian $+\pi \pi$-FSI
- CP-Conserving for M_{1} and E_{2} photon transitions
- Study $M\left(\pi^{+}, \pi^{-}\right)$-Distribution:
i) Determine contributions from box anomaly term
ii) Insights into $\pi \pi$-FSI \Rightarrow mainly ρ-Resonance for η^{\prime}
- Amplitude analysis for decay: $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ Ling-Yun Dai et al., Phys. Rev. D97(036012),(2018)

$\eta^{(1)} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$Box Anomaly, FSI and CP-Violation

Underlying decay: $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} \gamma$

- Wess-Zumino-Witten-Lagrangian $+\pi \pi$-FSI
- CP-Conserving for M_{1} and E_{2} photon transitions
- Access to CP-violation \rightarrow Measure E_{1} γ transition \rightarrow Need information about γ polarization

Virtual case: $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} \gamma^{*}$

- Where: $\gamma^{*} \rightarrow e^{+} e^{-}$
\Rightarrow suppressed by $\approx \alpha$
- Polarization encoded in $\left(\pi^{+} \pi^{-}\right)-\left(e^{+} e^{-}\right)$decay planes

Illustration on the bottom right taken from:

$\eta \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$Asymmetry

- $A_{\Phi}=\frac{N(\sin [\phi] \cos [\phi]>0)-N(\sin [\phi] \cos [\phi]<0)}{N(\sin [\phi] \cos [\phi]>0)+N(\sin [\phi] \cos [\phi]<0)}$
- Measuring A_{Φ} reveals information about CP-violating transitions
- Upper limit predicted by theory ${ }^{(a)}: \sim 1 \%$ (a) D. Gao. Mod. Phys. Lett., A17:1583-1588,(2002)
- Measurements of A_{Φ} performed by:
i) KLOE (bottom left)
ii) WASA-at-COSY (bottom right)

$\eta^{\left({ }^{\prime}\right)} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$Asymmetry and Branching Fraction

Experiment	\boldsymbol{X}	$\frac{\boldsymbol{\Gamma}\left(\boldsymbol{X} \rightarrow \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right)}{\boldsymbol{\Gamma} \boldsymbol{X}}\left[10^{-4}\right]$	$\boldsymbol{A}_{\Phi}\left[10^{-2}\right]$	\#Events [k]
WASA ${ }^{(b)}$	η	$2.7 \pm 0.2_{\text {stat }} \pm 0.2_{\text {sys }}$	$-1.1 \pm 6.6_{\text {stat }} \pm 0.2_{\text {sys }}$	0.215
KLOE $^{(c)}$	η	$2.68 \pm 0.09_{\text {stat }} \pm 0.07_{\text {sys }}$	$-0.6 \pm 2.5_{\text {stat }} \pm 1.8_{\text {sys }}$	1.6
BESIII $^{\text {(d) }}$	η^{\prime}	$21.1 \pm 1.2_{\text {stat }} \pm 1.5_{\text {sys }}$	n / a	0.429

(b) WASA-at-COSY coll. Phys. Rev.C,94,065206 (2016)
(c) KLOE coll. Phys. Lett.B,675, 283-288 (2009)
(d) BESIII coll. Chinese Phys. C 42, 04202 (2108)

- Shown on the right: BESIII ${ }^{(d)}$ analysis of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$
- Main background contribution:
$\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ at $M\left(e^{+}, e^{-}\right) \approx 0.015 \mathrm{GeV}$

$\eta^{(1)} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$Plans and Analysis Strategy for GlueX-I

- Physics Observables:
i) Branching fraction
ii) $M\left(\pi^{+}, \pi^{-}\right)$and $M\left(e^{+}, e^{-}\right)$
iii) A_{Φ}
- PID is crucial part of analysis:
- Utilize machine learning to identify particles within detector
- Combine information into Bayesian probability
- Analyzed 5\% of the GlueX-I 2018 data so far:
- Reconstructed $\sim 120 \eta^{\prime} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$event candidates
- Main background contributions from: ρ^{0}, ω, K_{S} and $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$

Summary and Outlook

1. Dalitz Plot Analysis for $\boldsymbol{\eta} \rightarrow \pi^{+} \pi^{-} \boldsymbol{\pi}^{0}$:

- Reconstructed $\sim 300 \mathrm{k}$ events in GlueX-I 2017 data
- Dalitz Plot distribution shows no C-violating asymmetries \Rightarrow Uniform reconstruction efficiency
- Analysis of GlueX-I 2018 data ongoing
- Systematic studies and parameter extraction on the way
- Expected statistics after analyzing total GlueX-I data comparable with KLOE

2. Anomalous Decay $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$:

- Reconstructed $\sim 120 \eta^{\prime}$ event candidates in 5\% of GlueX-I 2018 data
- Electron identification crucial for analysis:
i) Suppression of $\pi^{ \pm}$background
ii) Calculation of asymmetry A_{Φ}
- Analysis of remaining data set is ongoing
- Expected to have at least statistics as current BESIII result

Content

1. General

1.1 The $\eta^{(\prime)}$-Trinity (2)
1.2 The GlueX Experiment (3)
2. $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
2.1 Decay Dynamics (4)
2.2 Dalitz Plot Analysis (5)
2.3 Recent results (6)
2.4 Status GlueX-I Data Analysis (7)
3. $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$
3.1 Box Anomaly, FSI and CP-Violation (8)
3.2 Asymmetry (9)
3.3 Asymmetry and Branching Fraction (10)
3.4 Plans and Analysis Strategy for GlueX-I (11)
4. Summary and Outlook (12)

