Studying the hadronic and semi-leptonic Decay Modes of the $\eta^{(\prime)}\text{-}\mathrm{Meson}$ with GlueX-I

Daniel Lersch

Florida State University

11.04.2019

GHP (2019)

The $\eta^{(\prime)}$ -Trinity

- Isospin Violation
- Quark Mass Ratio

→ппп

→ππŋ

SEMI-LEPTONIC:

- Transition Form Factors
- CP-Violation

→l⁺l⁻γ

→l+l-l+l-

п⁺π⁻ ใ⁺ℓ

The GlueX Experiment

• Completed data taking phase I in fall 2018:

Run Period	Luminosity $[pb^{-1}]$
2016	10
2017	45
2018	150

• Continue data taking with DIRC upgrade and high intensity beam in fall 2019

Daniel Lersch (FSU)

$\left(\eta ightarrow \pi^+\pi^-\pi^0 ight)$ Decay Dynamics

System	Isospin State $ I, I_z\rangle$	C-Eigenvalue	G-Eigenvalue
η	0,0 angle	+1	+1
$(\pi^{+}\pi^{-}\pi^{0})$	0,0 angle	-1	-1
$(\pi^+\pi^-\pi^0)$	1,0 angle	+1	-1

- Decay $\eta \to \pi^+\pi^-\pi^0$ is G-violating \Rightarrow Forbidden to first order
- Decay is driven by isospin breaking part of strong interaction
 ⇒ C is conserved
- Decay width: $\Gamma \propto Q^{-4}$

with:
$$Q^2 = \left(\frac{m_s}{m_d}\right)^2 \times \left[1 - \left(\frac{m_u}{m_d}\right)^2\right]^{-1}$$

 $\Rightarrow~$ Determine decay width $\Gamma \Rightarrow$ Access to quark mass ratio

- a) Measure $\Gamma(\eta \to \pi^+ \pi^- \pi^0)$, e.g. via $\frac{\Gamma(\eta \to \pi^+ \pi^- \pi^0)}{\Gamma(\eta \to \gamma \gamma)}$
- b) Dalitz Plot Analysis

 $\left[\eta
ightarrow \pi^+ \pi^- \pi^0
ight]$ Dalitz Plot Analysis

Parameterize decay width Γ:

$$rac{d^2\Gamma}{dXdY}\propto \left(1+aY+bY^2+cX+dX^2+eXY+fY^3+gX^2Y+\cdots
ight)$$

• With dimensionless variables:

 $X = \sqrt{3}(T_{\pi^+} - T_{\pi^-})/\Sigma_T \rightarrow \text{Sensitive to charge conjugation}$ $Y = 3T_{\pi^0}/\Sigma_T - 1$

- Results from KLOE: KLOE coll., JHEP, 019, (2016)
- i) η -Mesons produced via: $e^+e^- \rightarrow \Phi \rightarrow \eta \gamma$

ii)
$$pprox$$
 4.7 ${
m M}$ $\eta
ightarrow \pi^+\pi^-\pi^0$ events

 $\left[\overline{\eta
ightarrow \pi^+ \pi^- \pi^0}\right]$ Dalitz Plot Analysis

Parameterize decay width Γ:

 $rac{d^2\Gamma}{dXdY} \propto \left(1+aY+bY^2+cX+dX^2+eXY+fY^3+gX^2Y+\cdots
ight)$

• <u>With dimensionless variables:</u>

 $X = \sqrt{3}(T_{\pi^+} - T_{\pi^-})/\Sigma_T \rightarrow \text{Sensitive to charge conjugation}$ $Y = 3T_{\pi^0}/\Sigma_T - 1$

- Results from WASA-at-COSY: WASA-at-COSY coll., Phys. Rev., C90(045207), (2014)
- i) η -Mesons produced via: $pd \rightarrow {}^{3}\text{He}\eta$
- ii) $\approx 120 \,\mathrm{k} \,\eta
 ightarrow \pi^+ \pi^- \pi^0$ events

$\left[\eta ightarrow \pi^+ \pi^- \pi^0\right]$ Recent Results

Parameter:		— a	b	d	f
Exp.	KLOE(08) ^(a)	$1.090(5)(^{+8}_{-19})$	0.124(6)(10)	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)
ш	WASA ^(d)	1.144(18)	0.219(19)(47)	0.086(18)(15)	0.115(37)
	KLOE(16) ^(f)	1.104(3)(2)	$0.142(6)(^{5}_{-4})$	$0.073(3)(^{+4}_{-3})$	$0.154(6)(^{+4}_{-5})$
Theo.	ChPT (NNLO) ^(b)	1.271(75)	0.394(102)	0.055(57)	0.025(160)
H ا	NREFT ^(c)	1.213(14)	0.308(23)	0.050(3)	0.083(19)
	PWA ^(e)	1.116(32)	0.188(12)	0.063(4)	0.091(3)
	PWA ^(g)	1.077(29)	0.170(8)	0.060(2)	0.091(3)

- (a) KLOE coll., JHEP, 05, (2008)
- (c) S- P. Schneider et al., JHEP, 028, (2011)

(b) J. Bijnens and K. Ghorbani., JHEP, 11, (2007)

(d) WASA-at-COSY coll., Phys. Rev., C90(045207), (2014)

- (e) Peng Guo et al., Phys. Rev., D92(05016), (2015)
- (f) KLOE coll., JHEP, 019, (2016)
- (g) Peng Guo et al., Phys. Lett., B771(497-502), (2017)
 - Partial wave analysis performed by JPAC: WASA-at-COSY: $Q = 21.4 \pm 1.1^{(e)}$ (~ 120 k events) KLOE: $Q = 21.7 \pm 1.1^{(g)}$ (~ 4.7 $\cdot 10^{6}$ events)
 - CLAS6 Dalitz Plot analysis on g12 data ongoing
 - Perform Dalitz Plot Analysis with GlueX-I Data 1.) $\eta \rightarrow \pi^+ \pi^- \pi^0$

2.)
$$\eta' \rightarrow \pi^+ \pi^- \eta$$

Daniel Lersch (FSU)

$\left(\eta ightarrow\pi^{+}\pi^{-}\pi^{0} ight)$ Status GlueX-I Data Analysis

- pprox 300 k $\eta \to \pi^+ \pi^- \pi^0$ events reconstructed in 2017 data set
- No asymmetry observed: c, e (and h) are consistent with 0
- Dalitz Plot analysis for GlueX-I 2018 data set ongoing

$(\eta^{(\prime)} \rightarrow \pi^+ \pi^- e^+ e^-)$ Box Anomaly, FSI and CP-Violation

Underlying decay: $\eta^{(\prime)}
ightarrow \pi^+ \pi^- \gamma$

- Wess-Zumino-Witten-Lagrangian $+ \pi \pi$ -FSI
- CP-Conserving for M_1 and E_2 photon transitions

- i) Determine contributions from box anomaly term
- ii) Insights into $\pi\pi$ -FSI \Rightarrow mainly ρ -Resonance for η'
- Amplitude analysis for decay: $\eta' \rightarrow \pi^+\pi^-\gamma$

Ling-Yun Dai et al., Phys. Rev. D97(036012),(2018)

GHP (2019)

$(\eta^{(\prime)} ightarrow \pi^+ \pi^- e^+ e^-)$ Box Anomaly, FSI and **CP-Violation**

Underlying decay: $\eta^{(\prime)}
ightarrow \pi^+\pi^-\gamma$

- Wess-Zumino-Witten-Lagrangian $+ \pi \pi$ -FSI
- CP-Conserving for M_1 and E_2 photon transitions
- Access to CP-violation \rightarrow Measure E_1 γ transition \rightarrow Need information about γ polarization

Virtual case:
$$\eta^{(\prime)}
ightarrow \pi^+\pi^-\gamma^*$$

- Where: $\gamma^* \to e^+ e^ \Rightarrow$ suppressed by $\approx \alpha$
- Polarization encoded in $(\pi^+\pi^-)$ - (e^+e^-) decay planes

Illustration on the bottom right taken from:

WASA-at-COSY coll. Phys. Rev. C, 94 ,065206 (2016)

 $(\eta
ightarrow \pi^+ \pi^- e^+ e^-)$ Asymmetry

- $A_{\Phi} = \frac{N(\sin[\Phi]\cos[\Phi]>0) N(\sin[\Phi]\cos[\Phi]<0)}{N(\sin[\Phi]\cos[\Phi]>0) + N(\sin[\Phi]\cos[\Phi]<0)}$
- Measuring A_Φ reveals information about CP-violating transitions
- Upper limit predicted by theory $^{(a)}$: $\sim 1\%$ (a) D. Gao. Mod. Phys. Lett., A17:1583-1588,(2002)
- Measurements of A_Φ performed by:
 i) KLOE (bottom left)
 ii) WASA-at-COSY (bottom right)

9 / 12

$\eta^{(\prime)} ightarrow \pi^+\pi^- e^+ e^-)$ Asymmetry and Branching Fraction

Experiment	x	$\frac{\Gamma(X \to \pi^+ \pi^- e^+ e^-)}{\Gamma_X} \ [10^{-4}]$	$oldsymbol{A}_{\Phi}$ $[10^{-2}]$	#Events [k]
WASA (b)	η	$2.7\pm0.2_{\textit{stat}}\pm0.2_{\textit{sys}}$	$-1.1\pm 6.6_{\textit{stat}}\pm 0.2_{\textit{sys}}$	0.215
KLOE (c)	η	$2.68\pm0.09_{\textit{stat}}\pm0.07_{\textit{sys}}$	$-0.6\pm2.5_{\textit{stat}}\pm1.8_{\textit{sys}}$	1.6
BESIII (d)	η'	$21.1 \pm 1.2_{\textit{stat}} \pm 1.5_{\textit{sys}}$	n/a	0.429

(b) WASA-at-COSY coll. Phys. Rev.C,94 ,065206 (2016)

(c) KLOE coll. Phys. Lett. B,675 ,283-288 (2009)

(d) BESIII coll. Chinese Phys. C 42, 04202 (2108)

- Shown on the right: ${\rm BESIII}^{(d)}$ analysis of $\eta' \to \pi^+\pi^-e^+e^-$
- Main background contribution: $\eta' \rightarrow \pi^+ \pi^- \gamma$ at $M(e^+, e^-) \approx 0.015 \,\text{GeV}$

 $\left(\eta^{(\prime)}
ightarrow\pi^+\pi^-e^+e^ight)$ Plans and Analysis Strategy for GlueX-I

- Physics Observables:
 - i) Branching fraction
 - ii) $M(\pi^+,\pi^-)$ and $M(e^+,e^-)$
 - iii) A_Φ
- PID is crucial part of analysis:
 - Utilize machine learning to identify particles within detector
 - Combine information into Bayesian probability
- Analyzed 5% of the GlueX-I 2018 data so far:
 - Reconstructed $\sim 120 \ \eta' \rightarrow \pi^+\pi^-e^+e^-$ event candidates
 - ▶ Main background contributions from: ρ^0 , ω , K_S and $\eta' \to \pi^+ \pi^- \gamma$

Summary and Outlook

- 1. Dalitz Plot Analysis for $\eta \to \pi^+\pi^-\pi^0$:
 - $\blacktriangleright\,$ Reconstructed \sim 300 k events in GlueX-I 2017 data
 - Dalitz Plot distribution shows no C-violating asymmetries
 ⇒ Uniform reconstruction efficiency
 - Analysis of GlueX-I 2018 data ongoing
 - Systematic studies and parameter extraction on the way
 - Expected statistics after analyzing total GlueX-I data comparable with KLOE
- 2. Anomalous Decay $\eta^{(\prime)}
 ightarrow \pi^+\pi^- e^+e^-:$
 - $\blacktriangleright\,$ Reconstructed \sim 120 η' event candidates in 5% of GlueX-I 2018 data
 - Electron identification crucial for analysis:
 - i) Suppression of π^{\pm} background
 - ii) Calculation of asymmetry A_{Φ}
 - Analysis of remaining data set is ongoing
 - Expected to have at least statistics as current BESIII result

Content

1. General

- 1.1 The $\eta^{(\prime)}\text{-Trinity}$ (2)
- 1.2 The GlueX Experiment (3)

2. $\eta \rightarrow \pi^+ \pi^- \pi^0$

- 2.1 Decay Dynamics (4)
- 2.2 Dalitz Plot Analysis (5)
- 2.3 Recent results (6)
- 2.4 Status GlueX-I Data Analysis (7)

3. $\eta^{(\prime)} \rightarrow \pi^+\pi^-e^+e^-$

- 3.1 Box Anomaly, FSI and CP-Violation (8)
- 3.2 Asymmetry (9)
- 3.3 Asymmetry and Branching Fraction (10)
- 3.4 Plans and Analysis Strategy for GlueX-I (11)
- 4. Summary and Outlook (12)