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Introduction to n-particle effective theories (npi)

Introduction

strong coupling — can't use perturbation theory
different approaches (for example):

e |attice calculations
— continuum and infinite volume limits

e continuum methods

- Schwinger-Dyson equations

- renormalization group (RG)

- n-particle irreducible (npi) effective theories
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Introduction to n-particle effective theories (npi)

1pi effective action for scalar theories:
generating functional with a source term

Z[J] = Wl — /D(pei(s[¢]+J;<pi)

effective action:

OW /6 = ¢! Q—Q

r[¢] — W[J] _ JI.(ZS,. 1 particle reducible

¢ determined self-consistently g—;‘d):(z-) =0

short-hand notation: [ dx J(x) p(x) = Jipi = Jo
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Introduction to n-particle effective theories (npi)

2pi effective action:
generating functional with local and bi-local sources

Z[J,B] = eWIJ:B]l — /D(pei(s[<p]+ii<pi+§sai3ij%)

— [[¢, G] is a functional of the 1- and 2-point functions

¢ and G determined self-consistently from variational principle

dyson equation
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Introduction to n-particle effective theories (npi)

npi effective action

we could add higher order source terms
— more variational vertices

in general: npi I is a functional of n variational vertices
each determined self-consistently from its eom

= set of coupled integral equations
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Introduction to n-particle effective theories (npi)

compare [[G, @] to [pi[d]

e I'[¢, G] depends on the self consistent propagator

— truncated ¢, G] includes an infinite resummation of diagrams
— non-perturbative

e ['[¢, G] is 2pi - no double counting

-
-

2pr — not included

J
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Introduction to n-particle effective theories (npi)

Key features:

> non-perturbative
infinite resummations of selected classes of diagrams
physics example:
- transport coefficients in gauge theories at leading order
require vertex corrections (LPM effect)

- 0qed from lowest order 3pi effective action
not obtainable from 2pi effective action at any loop order

» action based approximation

truncation occurs at the level of the action
— symmetries of original theory
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Introduction to n-particle effective theories (npi)

» renormalizability
basic problem: self-consistent sets of integral equations
plagued by overlapping ultraviolet divergences

1pi: introduce momentum independent counterterms
same structure as bare interactions in the Lagrangian
2pi: counterterms ... (with some adjustments)

- cannot apply same method to higher order approximations

— new method based on renormalization group (RG)
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Counterterm renormalization

npi renormalization — an example

4-loop 2pi 4-kernel A = 45;qéi2nt

o a

counterterms appear in positions to cancel 1-loop divergences

b —
+

o=

=

o

5

©
+

BI—

=

- but there is no one d\; that works

this is typical of npi theories - combinatorics are different
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Counterterm renormalization

Resolution for 2pi

need 2 vertex ct's . . .
1) they both come from the action

2) at L — oo loops they are equal

H. van Hees, J. Knoll, Phys. Rev. D65, 025010 (2002);
J-P Blaizot, E. lancu, U. Reinosa, Nucl. Phys. A736, 149 (2004);
J. Berges, Sz. Borsdnyi, U. Reinosa, J. Serreau, Annals Phys. 320, 344 (2005).

BUT unknown how to use counterterms beyond the 2pi level
must develop another method to renormalize

Carrington, 11-04-2019, APS hadron physics (slide 11 of 24)



Renormalization group and npi

Renormalization group method

add to the action a non-local regulator term AS,[¢] = —1 R,¢?
2
Ri = #
e@/r* — 1

RH(Q)N/'iz for Q<</€
fluctuations Q < k suppressed
R.(Q) — 0 for Q >k

fluctuations @ > x unaffected
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Renormalization group and npi

= family of theories indexed by the continuous parameter

K — 00
all fluctuations suppressed
regulated action — classical action

k—0
fluctuations are smoothly taken into account as k is lowered to zero
regulated action — full quantum action

J.-P. Blaizot, A. Ipp, N. Wschebor, Nucl. Phys. A 849, 165 (2011)
J.-P. Blaizot, J.M. Pawlowski and U. Reinosa, Phys. Lett. B 696, 523 (2011)
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Renormalization group and npi

generating functionals defined in the usual way
i 1~ , 1,5
Z:[J,B] = [ [dy]exp ’<5[90]* SRap™ +Jp+ 2By +)
calculate 1pi, 2pi, --- effective action
action depends on x: &, = il

1
action flow eqn: 0,0, = EOHRH G

C. Wetterich, Phys. Lett., B 301, 90 (1993).
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Renormalization group and npi

key idea

standard formalism:
- variational vertices from solving ‘S-Dyson-like’ integral equations
- obtained by taking functional derivatives of I'(¢, G,V ---)
- beyond 2pi level these equations have divergences
that can't be absorbed by a finite set of counterterms

RG formalism:
variational vertices obtained from solving flow equations
- obtained by taking functional derivatives of 0.l (¢, G,V ---)
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Renormalization group and npi

4pi flow equations

e L n,m
a"q)i(nt-rz 6=G. 2/dQ Ok (R + Xx) GE(Q) ¢i(n£-n+l)(Q, )
¢=o0
1 .
£ ] @OV G SIT(@ )
¢f§{"§ is a kernel with 2m + 4n legs

- example m =1 and n = 0 gives a 2-point function (self energy)

note we have an infinite hierarchy of coupled equations ...
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Renormalization group and npi

our calculation = 4 loop 4pi effective action
first flow equation:

_ 1 1
0,{‘@7 =9 o4

a"Gh_l OV

(I)11 =
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Renormalization group and npi

Method

solve hierarchy of differential flow eqns for x dependent n-point fcns
role of kappa:
K — oo regulated action — classical action

k — 0 regulated action — full quantum action

— method to solve flow equations:
1. choose an uv scale kK = p (defn of bare parameters)

theory is classical at this scale (all fluctuations suppressed)

— n-point functions are known functions of the bare parameters

2. solve differential flow equations starting from bc's at k = p

— obtain the n-point fcns at k = 0 (the quantum solutions)
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Renormalization group and npi

Technicalities

KEY:
bc's chosen at Kk = < classical scale where theory is simple

rc's are imposed at « =0 < this is the full quantum theory
3 Issues:

1. Tuning: definition of physical parameters (k = 0)
~~ constrains initial conditions on the flow equations (k = )
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Renormalization group and npi

2. Consistency: can we satisfy both the bc's and the rc's?
(A): flow equations — vertex fcns up to x independent constant
— can satisfy bc with an appropriate choice of this constant

(B): the rc's are satisfied if

lim [Ao(P1, Pz Pm) — No(0,0---0)] = constant

P;—0

looks obvious . . .

sub-divergences could give something ill defined like oo x 0
can satisfy condition if the truncation is performed correctly
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Renormalization group and npi

3. Truncation:

it is obvious that hierarchy of flow eqns truncates with action

but actually: can truncate as soon as we find a kernel that satisfies
limp, 50 [/\O(Pl, Py Pp)—No(0,0--- 0)] = constant

= no sub-divergence in quantum n-point function

KEY to truncation:

kernel with a sub-divergence must be obtained from its flow eqn

kernel without a sub-divergence doesn't have to be flowed
- substitute directly into previous flow equation
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Renormalization group and npi

4-loop 4pi calculation

1. [(3 legs) x (4 dims)] + (4 x 1 inte vars) = 16 loops
2. memory constraints — spherical coordinates

— 13 loops (some angles are “free")

4 matsubara frequencies

5 angles (very weak dependence)

4 momentum magnitudes

3. use symmetries (for example under leg permutations)

4. must store a 9 dimensional array for the variational 4 vertex
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Results

Results
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Conclusions

Conclusions

e 2pi can be renormalized with counterterms
at > 4 loop require two vertex and two mass counterterms
. can't be generalized to higher order theories
e functional renormalization group regulator = (mp, \p)
all divergences are absorbed into bare parameters of the lagrangian
agrees with counterterm renormalization for the 2pi calculation

method generalizes to higher order nP|

further 4pi numerical calculations are in progress
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