Searching for the onset of Color Transparency in Hall C

Holly Szumila-Vance On behalf of the Hall C Collaboration

Wednesday, Apr 10 2019

Office of Science

Overview

- Motivation
- Experiment
 - First commissioning experiment in Hall C!
 - Performance
 - Preliminary results
- Summary and Outlook

Exploring the strong interaction

Color transparency fundamental prediction of QCD

- Introduced by Mueller and Brodsky, 1982
- Vanishing of initial/final state interaction of hadrons with nuclear medium in exclusive processes at high momentum transfer
- Hadron fluctuates to small transverse size (quantum mechanics)
- Maintains this small size as it propagates out of the nucleus (relativity)
- Experiences reduced attenuation in nucleus, color screened (strong force)

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture → arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_A, as a function of the momentum transfer, Q²

$$T_A = \frac{\sigma_A}{A \sigma_N} (\begin{array}{c} \text{nuclear cross section} \\ \text{(free nucleon} \\ \text{cross section} \end{array})$$

APS Topical Group on Hadronic Physics, April 2019

Previous Measurements: Mesons

Enhancements consistent with CT (increasing with Q² and A) observed

CLAS E02-110 rho electro-production $A(e,e'\rho^0)$

fferson Lab

Previous Measurements: Baryons

A(e,e'p) results consistent with standard nuclear physics

Previous Measurements: Baryons

Transparency in A(p,2p) experiment at Brookhaven:

- observed enhancement in transparency
- inconsistent with CT only
- could be explained by including nuclear filtering or charm resonance

Measuring the onset in the 12 GeV era!

Experiment overview: First experiment to run in Hall C in the 12 GeV era!

- Coincidence trigger: SHMS measures protons, HMS measures electrons
- Targets: 10 cm LH₂ (H(e,e'p) check), 6% ¹²C (production), Al dummy (background)

son Lab

Experiment overview: First experiment to run in Hall C in the 12 GeV era!

- Coincidence trigger
- Targets: 10 cm LH₂ for H(e,e'p) check, 6% ¹²C (production), Al dummy (background)

SHMS Characteristics:

- 5 x 10⁻⁴ dP/P resolution
- 4 mSr Acceptance
- 1 to 11 GeV/c
- 5.5 deg to 40 deg
- 18.4 degree vertical bend (dipole)

Coincidence timing: relative time difference between e- and p at the target

General coincidence time: $t_{coin} = t_e^{tar} - t_p^{tar}$

The time of each particle:

Coincidence time

$$t_{e,p}^{tar} = (t_{e,p}^{trigger} - \Delta t_{e,p}^{corr})$$

Each particle time corrected for:

- Particle traveling along central ray to focal plane
- Path length variations
- Difference in time between hodoscope start and focal plane time

Hydrogen HMS data: Q² = 8 GeV²

Hydrogen SHMS data: Q² = 8 GeV²

Hydrogen: W, Emiss and Pmiss

Hydrogen radiative tails: Emiss spectra

Cuts: Particle identification selection

Detector efficiencies

Plots from John Matter, UVa

Hydrogen yield-preliminary

Jefferson Lab

Carbon HMS data: Q² = 8 GeV²

Carbon SHMS data: Q² = 8 GeV²

Carbon radiative tails

• Radiative effects agree with simulation in the tails.

Carbon yield-preliminary

Jefferson Lab

APS Topical Group on Hadronic Physics, April 2019

Transparencies-preliminary

Summary

- Measuring the onset of CT is a signature for the onset of QCD degrees of freedom in nuclei
- Experiment took 4 data points in Q² regime 8-14.3 GeV², ideal region to measure the onset of CT
- First experiment to run in the 12 GeV era in Hall C and to take data using the SHMS
- Preliminary results for nuclear transparencies
- Analysis to understand systematics is ongoing

Thank you to the Hall C Collaborators!

Jefferson Lab

Work supported by DOE office of science (U.S. DOE Grant Number: DE-FG02-07ER41528)

APS Topical Group on Hadronic Physics, April 2019

APS Topical Group on Hadronic Physics, April 2019

