A peek into parton confinement: Transverse polarized scattering and quark-gluon correlations in nucleons.

Oscar A. Rondón
INPP - University of Virginia (retired)

8th Workshop of the APS Topical
Group on Hadronic Physics
Denver, April 12, 2019

Nucleon structure from DIS

- Visible matter mostly made of hadrons (baryons \& mesons)
- Hadrons, e.g. nucleons, are systems of quarks bound by gluons according to $\mathrm{SU}(3)$ classifications
- Nucleon structure has been probed with non hadronic probes
- point like structures found with DIS of leptons: partons
- partons identified with quarks
- nevertheless, at even the highest energies/momentum transfers DIS or hadronic beams are unable to produce free quarks: confinement
- QCD says that as quark separation increases $q q$ potential grows linearly
- origin of confinement still a major mystery in physics

Scaling and deviations

- When probing nucleon structure in DIS at small distances (= very high Q^{2}) partons/quarks behave as free, non-interacting objects:
- Nucleon F_{2} structure function stays constant in Q^{2} at intermediate values of struck parton momentum x_{B} : scaling

Scaling and deviations

- Deviations from scaling
- at low x_{B} : gluon radiation log scaling violation
- at $x_{\mathrm{B}} \sim 1$ deviations get worse at low Q^{2} : increasing interactions as parton separation grows as $1 / Q^{2}$: end of perturbative regime

Scaling and deviations

- Deviations from scaling
- at low x_{B} : gluon radiation \log scaling violation
- at $x_{\mathrm{B}} \sim 1$ deviations get worse at low Q^{2} : increasing interactions as parton separation grows as $1 / Q^{2}$: end of perturbative regime
(limited spin structure funtion g_{1} data available at high x)

Phys.Lett. B753 (2016) 18

Moments and Higher Twists

- Nucleon structure beyond log scaling violations:
- Higher Twists (HT): inverse Q^{2} power corrections to DIS structure functions (unpolarized SF's $F_{1,2}$ and spin dependent $G_{1,2}$)
- Dynamical HT represent parton correlations beyond free quark picture: long distance behavior of quarks and gluons
- Access to HT: Moments of SF's related by OPE to matrix elements of quark operators of given twist (= dimension - spin of operators)
- Moments expanded in power series of $\left(A(x) / Q^{2}\right)^{\text {(twist-2) }}$
- Moments integrate over full x range: $\quad M_{2,3}^{(n)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n} g_{1,2}\left(x, Q^{2}\right)$
- Resonances and elastic contribute at lower energies
- HT clouded by kinematic operators of same twist, but higher spin
- "Target Mass" corrections required.

Transverse Polarized Scattering: Unlocking Twist-3

- Lowest twist-2 and twist-3 operators contribute at same order in polarized leptons scattering off transverse polarized nucleons
- twist-2: handbag diagram
- twist-3: $q g q$ correlations
- direct access to twist-3 via g_{2} SF:
- interacting $q g q$ is first step to understanding confinement

(c)

(d)
(e)
$\log Q^{2}$
(twist-2 corrections)
(Comments NPP 19, 239 (1990))
twist-3
(QCD evolution of g_{2} : singlet/non-singlet Ji et al.: many diagrams.)

OPE for Polarized SF's

- Cornwall-Norton moments of \boldsymbol{g}_{1} and \boldsymbol{g}_{2} connected by OPE to twist-2 matrix elements $\boldsymbol{a}_{\mathrm{n}}$ and twist- $3 \boldsymbol{d}_{\mathrm{n}}$

$$
\begin{array}{ll}
\Gamma_{1}^{(n)}=\int_{0}^{1} x^{n} g_{1}\left(x, Q^{2}\right) d x=\frac{1}{2} \boldsymbol{a}_{n}+O\left(M^{2} / Q^{2}\right), & n=0,2,4, \ldots \\
\Gamma_{2}^{(n)}=\int_{0}^{1} x^{n} g_{2}\left(x, Q^{2}\right) d x=\frac{n}{2(n+1)}\left(\boldsymbol{d}_{n}-\boldsymbol{a}_{n}\right)+O\left(M^{2} / Q^{2}\right), & n=2,4, \ldots
\end{array}
$$

- $\boldsymbol{d}_{\mathbf{n}}$ is shorthand for $\tilde{d}_{n}=\sum_{i} d_{i}^{n}\left(\mu^{2}\right) E_{i, 3}^{n}\left(Q^{2} / \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right), \quad i=$ spin,$E=$ Wilson coeff.
- At low-moderate Q^{2} Nachtmann moments are needed to obtain clean dynamic twist-3 matrix elements (no target mass effects to $O\left(M^{8} / Q^{8}\right)$)

$$
\boldsymbol{d}_{2}\left(\boldsymbol{Q}^{2}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow{Q^{2} \rightarrow \infty}_{1}^{\int_{0}} d x x^{2}\left(2 g_{1}+3 g_{2}\right)
$$

Brief History of \boldsymbol{g}_{2}

- g_{2} known since late 1960 's:
- $g_{2}=0$ in parton model: no transverse momentum or spin
- $g_{1}+g_{2}=0^{[1]}$ or $=\sum\left(e_{i}^{2} / 2\right) \Delta q_{i}^{T}(x) \quad$ (transverse polarized quarks ${ }^{[2]}$)
- Now g_{2} is understood as having twist- $2\left(g_{1}\right)$ piece ${ }^{[3]}+$ twist-3 part ${ }^{[4]}$

$$
g_{2}\left(x, Q^{2}\right)=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} g_{1}\left(x^{\prime}, Q^{2}\right) \frac{d x^{\prime}}{x^{\prime}}-\int_{x}^{1} \frac{\partial}{\partial x^{\prime}}\left[\frac{m}{M} h_{T}\left(x^{\prime}, Q^{2}\right)+\xi\left(x^{\prime}, Q^{2}\right)\right] \frac{d x^{\prime}}{x^{\prime}}
$$

- h_{T} is twist-2 chiral odd transversity; ξ represents $q g$ correlations.
- $g_{1}+g_{2}=g_{\mathrm{T}}$ is spin SF for nucleon spin transverse to virtual photon
[1] B. Ioffe et al., Hard Processes, 1984; [2] R.Feynman; E. Leader and M. Anselmino added $m_{\mathrm{q}}, k_{\mathrm{T}}$;
[3]S. Wandzura and F. Wilczek; [4] J. Cortes, B. Pire and J. Ralston; R. Jaffe and X. Ji.

\boldsymbol{g}_{2} and $\boldsymbol{g}_{\mathrm{T}}$ Spin Structure Functions

Inclusive SF's and TMD description

$$
g_{T}(x)=g_{1}(x)+g_{2}(x)=\frac{1}{2} \sum e_{q}^{2} g_{T}^{q}(x)
$$

g_{T}^{q} in terms of Transverse Momentum Dependent distributions ${ }_{[1]}$

$$
g_{T}(x)=\int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} \frac{g_{\mathrm{IT}}^{q}\left(x, \vec{k}_{t}^{2}\right)}{x}+\frac{m}{M} \frac{h_{1}(x)}{x}+\tilde{g}_{T}(x)
$$

Applying twist-2 Wandzura-Wilczek approximation of g_{2}

$$
g_{2}^{w W}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)
$$

Twist-3 for the nucleon (neglecting quark mass)

$$
\bar{g}_{2}=\frac{1}{2} \sum e_{q}^{2}\left[\tilde{g}_{T}^{q}-\int_{x}^{1} \frac{d y}{y}\left(\tilde{g}_{T}^{q}(y)-\hat{\mathrm{g}}_{T}^{q}(y)\right)\right] ; \tilde{g}_{T}=q g \text { term, } \hat{\mathrm{g}}_{T}=\text { Lorentz invariance [2] }
$$

What else makes g_{2} interesting?

- Initial interest in g_{2} driven by wish to reduce \boldsymbol{g}_{1} systematic error
- $1^{\text {st }}$ moment $=\mathrm{BC}$ sum rule - hard to access, no x powers supression
- \boldsymbol{d}_{2} twist-3 matrix element related to average color Lorentz force on struck quark:

$$
\begin{array}{r}
F^{y}(0) \equiv \frac{\sqrt{2}}{2 \mathrm{P}^{+}}\langle P, S| \bar{q}(0) \gamma^{+} G^{+y}(0) q(0)|P, S\rangle=-\sqrt{2} M P^{+} S^{x} d_{2} \\
\text { (M. Burkardt, PR D 88, 114502 (2013)) }
\end{array}
$$

- color field forces $\&$ polarizabilities (with twist-4 matrix element f_{2})
- magnetic $\chi_{\mathrm{B}}=\left(4 d_{2}+f_{2}\right) / 3$ and electric $\chi_{\mathrm{E}}=\left(4 d_{2}-2 f_{2}\right) / 3$.
- test of lattice $\mathrm{QCD}, \mathrm{QCD}$ sum rules, quark models
- higher twist corrections to \boldsymbol{g}_{1} with $\boldsymbol{d}_{\mathbf{2}}$ matrix element
- contains chiral odd twist-2 = quark transverse spin (mass term)
- test quark masses (covariant parton models)

Model Independent Extraction of Spin Structure Functions

- $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ can be separated by measuring cross section differences or asymmetries for opposite beam helicities with target spins parallel and transverse to the polarized beam

$$
\begin{aligned}
\Delta \sigma\left(\theta, \theta_{N}, \phi\right)= & \frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E \cos \theta_{N}+E^{\prime} \cos \alpha\right) M \boldsymbol{G}_{1}+2 E E^{\prime}\left(\cos \alpha-\cos \theta_{N}\right) \boldsymbol{G}_{2}\right] \\
& \cos \alpha=\sin \theta_{N} \sin \theta \cos \phi+\cos \theta_{N} \cos \theta, \quad(\theta, \phi: \text { final lepton angles })
\end{aligned}
$$

- transverse target spin $\theta_{\mathrm{N}}=\pi / 2$: comparable G_{1}, G_{2} terms

$$
\begin{gathered}
\frac{d^{2} \boldsymbol{\sigma}^{(r-)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\Delta-)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \theta \cos \phi\left[M G_{1}\left(v, Q^{2}\right)+2 E G_{2}\left(v, Q^{2}\right)\right] \\
\text { Scaling } \lim _{Q^{2}, v \rightarrow \infty} M^{2} v G_{1}\left(v, Q^{2}\right)=g_{1}(x) \\
\lim _{Q^{2}, v \rightarrow \infty} M v^{2} G_{2}\left(v, Q^{2}\right)=g_{2}(x)
\end{gathered}
$$

Virtual Compton Asymmetries

- The spin SF's are also related to virtual photon absorption crosssections and spin asymmetries (SA)
- the helicity of the virtual photon-nucleon system is $3 / 2$ or $1 / 2$ for transverse photons, $1 / 2$ for longitudinal ones
- SA \boldsymbol{A}_{1} is defined in terms of the difference for $3 / 2$ and $1 / 2$ helicity cross sections
- \boldsymbol{A}_{2} represents the interference between initial transverse and final longitudinal amplitudes:

$$
\begin{array}{r}
\boldsymbol{A}_{1}=\frac{\sigma_{T}^{(3 / 2)}-\sigma_{T}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)}}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right) \\
\gamma=(2 \times M) / \sqrt{Q^{2}}
\end{array}
$$

$$
A_{2}=\frac{\sigma_{T L}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)}} \leq \sqrt{\frac{A_{1}+1}{2} R} \leq \boldsymbol{R}=\frac{\sigma_{L}}{\sigma_{T}}
$$

- can be obtained directly from measured $\mathrm{A}_{\|}$and A_{\perp}

$$
A_{2}=\frac{\gamma}{F_{1}}\left(g_{1}+g_{2}\right)=\frac{\gamma}{F_{1}} \boldsymbol{g}_{T}
$$

Experiment

World g_{2} / d_{2} experiments

- A quarter of a century of dedicated \boldsymbol{g}_{2} experiments worldwide
- \boldsymbol{g}_{2} obtained from beam-target asymmetries $\mathrm{A}_{\|} \& \mathrm{~A}_{\perp}$ or cross section differences $\sigma_{\|} \& \sigma_{\perp}$
- p on ammonia $\left(\mathrm{NH}_{3}\right)$ solid targets or H gas (HERMES)
- n on ${ }^{3} \mathrm{He}$ gas and ND_{3} and LiD
- Polarized e - beam or μ (CERN)

Lab	Experiment	Year	Target	Measured quantity	Kinematics $Q^{2} \mathrm{GeV}^{2}$		
SLAC	E142	1992	${ }^{3} \mathrm{He}$	$\mathrm{A}_{\\|}, \mathrm{A}_{\perp}$	DIS 1.1-5.5		
	E143	1993	$\mathrm{NH}_{3}, \mathrm{ND}_{3}$	$A_{\\|}, \mathrm{A}_{\perp}$	DIS 1-9		
	E154	1996	${ }^{3} \mathrm{He}$	$A_{\\|}, A_{\perp}$	DIS 1.2-15		
	E155/ 155x	1997	NH_{3},LiD	$\mathrm{A}_{\\|}, \mathrm{A}_{\perp}$	DIS 1-27		
CERN	SMC	1994	NH_{3}	$\mathrm{A}_{\\|}, \mathrm{A}_{\perp}$	DIS 1.4-11.8		
DESY	HERMES	2003	H gas	ALt $(\cos \phi)$	DIS 0.4-7.1		
JLab	94-010		${ }^{3} \mathrm{He}$	$\sigma \\|, \sigma_{\perp}$	$\begin{gathered} \text { Resonances } \\ 0.1-0.9 \end{gathered}$		
	97-103		${ }^{3} \mathrm{He}$	$\sigma \\|, \sigma_{\perp}$	$\begin{gathered} \hline \text { DIS } \\ 0.6-1.4 \end{gathered}$		
	97-110		${ }^{3} \mathrm{He}$	$A_{\\|}, A_{\perp}$	Elastic, Resonances 0.02-0.5		
	99-117		${ }^{3} \mathrm{He}$	$A_{\\|}, A_{\perp}$	$\begin{gathered} \text { DIS } \\ 2.7,3.5,4.8 \end{gathered}$		
	$\begin{gathered} \text { 01-006 } \\ \text { (RSS) } \end{gathered}$		$\mathrm{NH}_{3}, \mathrm{ND}_{3}$	$A_{\\|}, A_{\perp}$	Resonances 1.3		
	01-012		${ }^{3} \mathrm{He}$	$\sigma \\|, \sigma_{\perp}$	Resonances $1-4$		
	06-014		${ }^{3} \mathrm{He}$	$A_{\\| \\|}, A_{\perp}$	$\begin{aligned} & \text { DIS } \\ & <3> \end{aligned}$		
	$\begin{aligned} & \text { 07-003 } \\ & \text { (SANE) } \end{aligned}$		NH_{3}	$A_{\\|}, A_{\perp}$	DIS, Resonances 1.6-6		
	$\begin{gathered} 08-027 \\ (\mathrm{~g} 2 \mathrm{p}) \\ \hline \end{gathered}$		NH_{3}	$\sigma_{\\|}, \sigma_{\perp}$	$\begin{aligned} & \text { Resonances } \\ & 0.03-0.3 \end{aligned}$		

Tools to get g_{2} / d_{2}

- Need
- polarized lepton beams
- \boldsymbol{e}^{-}linacs (SLAC/JLab)
- strained GaAs source

SLAC http://slac50.slac.stanford.edu/webimages/gallery/1969.jpg
JLab https://www.jlab.org/

Tools to get g_{2} / d_{2}

- Need
- polarized lepton beams
- $\boldsymbol{e}^{-/+}$collider (DESYHERMES)
- μ secondary beam (CERN SPS - SMC)

SMC CERN Courier March/April 2019 HERMES http://www-hermes.desy.de/

Tools to get g_{2} / d_{2}

- Need
- transverse polarized targets
- $\operatorname{solid}\left(\mathrm{SLAC} / \mathrm{JLab}^{[1]} / \mathrm{SMC}^{[2]}\right)$
- NH_{3} proton,
- $\mathrm{ND}_{3}, \mathrm{LiD}$ deuteron
[1]SLAC/JLab UVA polarized target group
[2] SMC NIM A 437 (1999) 23
[3]HERMES NIM A540 (2005) 69

Tools to get g_{2} / d_{2}

- Need
- transverse polarized targets
- $\operatorname{solid}\left(\mathrm{SLAC} / \mathrm{JLab}^{[1]} / \mathrm{SMC}^{[2]}\right)$
- NH_{3} proton,
- $\mathrm{ND}_{3}, \mathrm{LiD}$ deuteron
- gas:
- H (HERMES ${ }^{[3]}$)
- ${ }^{3} \mathrm{He}\left(\mathrm{SLAC} / \mathrm{JLab}{ }^{[4]}\right)$
[1]SLAC/JLab UVA polarized target group
[2] SMC NIM A 437 (1999) 23
[3]HERMES NIM A540 (2005) 69
[4]JLab 3He PR C 70, 065207 (2004)

Tools to get g_{2} / d_{2}

- Need detectors
- spectrometers
- SLAC End Station A
- JLab Halls A and C
- HERMES
- SMC NA47
[1]SLAC E155
[2] JLab PR D 94052003 (2016)
[3]HERMES Adv.Nucl.Phys. 26 (2001) 1

Tools to get g_{2} / d_{2}

- Need detectors
- spectrometers
- SLAC End Station A
- JLab Halls A and C
- HERMES

- SMC NA47
- telescopes (no \boldsymbol{B} field)
- JLab SANE BETA (Big Electron Telescope Array)

Data

σ_{2}^{p}

- Proton \boldsymbol{g}_{2} measured on
- solid ammonia NH_{3} targets (SLAC, JLab, CERN-SMC)
- H gas target (DESYHERMES)
- Mostly DIS; some high x points are resonance region but at very high Q^{2}

(some points not showing are outside y axis range)

$\mathcal{O 2}^{\mathrm{p}}$

- Proton \boldsymbol{g}_{2} measured on
- solid ammonia NH_{3} targets (SLAC, JLab, CERN-SMC)
- H gas target (DESYHERMES)
- Mostly DIS; some high x points are resonance region but at very high Q^{2}
(some points not showing are outside y axis range)

- SANE \triangle HERMES $\bullet E 155 x p \bullet E 155 p \bullet E 143 p \vee$ SMC p

$\mathcal{O 2}^{\mathrm{p}}$

- Proton \boldsymbol{g}_{2} measured on
- solid ammonia NH_{3} targets (SLAC, JLab, CERN-SMC)
- H gas target (DESYHERMES)
- Mostly DIS; some high x points are resonance region but at very high Q^{2}
(some points not showing are outside y axis range)

$\boldsymbol{O}_{2}^{\mathrm{n}}$

- Neutron g_{2} extracted from ${ }^{3} \mathrm{He}$, or D and p, target data
- Correction for polarized p and effective n polarization in ${ }^{3} \mathrm{He}$
- Correction for deuteron D state $\sim 1 / .92$

δ_{2}^{n}

- Neutron \boldsymbol{g}_{2} extracted from ${ }^{3} \mathrm{He}$, or D and p, target data
- Correction for polarized p and effective n polarization in ${ }^{3} \mathrm{He}$
- Correction for deuteron D state $\sim 1 / .92$

-E155x E155 E154

\mathcal{O}_{2}^{n}

- Neutron \boldsymbol{g}_{2} extracted from ${ }^{3} \mathrm{He}$, or D and p, target data
- Correction for polarized p and effective n polarization in ${ }^{3} \mathrm{He}$
- Correction for deuteron D state $\sim 1 / .92$

Data from Durham University HEP data repository https://www.hepdata.net/ E97-103 PRL 95, 142002 (2005) E99-117 PR C 70, 065207 (2004) E06-014 PR D 94, 052003 (2016)

$\boldsymbol{g}_{\mathbf{2}}$ in the Resonances Region

- RSS: only published precision resonances results to date

\boldsymbol{g}_{2} in the Resonances Region

- RSS: only published precision resonances results to date
- Parasitic HMS SANE proton data:
- new data at $Q^{2}=1.8 \mathrm{GeV}^{2}$
- extend RSS low x range at $1.3 \mathrm{GeV}^{2}$

\boldsymbol{g}_{2} in the Resonances Region

- RSS: only published precision resonances results to date
- Parasitic HMS SANE proton data:
- new data at $Q^{2}=1.8 \mathrm{GeV}^{2}$
- extend RSS low x range at $1.3 \mathrm{GeV}^{2}$

(SANE: H. Kang)

$\boldsymbol{g}_{\mathbf{2}}$ in the Resonances Region

- Resonances data
- JLab Hall A ${ }^{3} \mathrm{He}$ experiments
- E94-010
- E01-012
- RSS on ammonia
- $g_{2}{ }^{\mathrm{n}}$ from $g_{2}{ }^{\mathrm{d}}$ and AtwoodWatson smeared $g_{2}{ }^{\text {p }}$ (n result unpublished - S. Tajima)

E94-010 PRL 89, 242301 (2002)
E01-012 PRL 101, 182502 (2008)

d_{2}^{p}

- RSS plotted Nachtmann integral over $0 \leq x \leq 1$
- measured only
- $d_{2}{ }^{\mathrm{p}}=(37 \pm 6) 10^{-4}$
- $d_{2}{ }^{\mathrm{n}}=(15 \pm 12) 10^{-4}$
- Unexpected SANE $d_{2}<0$
- $d_{2}^{\mathrm{p}}\left(\left\langle Q^{2}\right\rangle=3.4 \mathrm{GeV}^{2}\right)$ $=(-31 \pm 25) 10^{-4}$ (total error)
- consistent with $d_{2}{ }^{\text {n }}$

- no significant elastic parts

$d_{2}{ }^{p}$

- RSS plotted Nachtmann integral over $0 \leq x \leq 1$
- measured only
- $d_{2}{ }^{\mathrm{p}}=(37 \pm 6) 10^{-4}$
- $d_{2}{ }^{\mathrm{n}}=(15 \pm 12) 10^{-4}$
- Unexpected SANE $d_{2}<0$
- $d_{2}^{\mathrm{p}}\left(\left\langle Q^{2}\right\rangle=3.4 \mathrm{GeV}^{2}\right)$
$=(-31 \pm 25) 10^{-4}$ (total error)
- consistent with $d_{2}{ }^{\text {n }}$

- no significant elastic parts
- SANE resonances $1.9 \mathrm{GeV}^{2}$
W. Armstrong et al., PRL 122, 022002 (2019)

SANE resonances: H.Kang

d_{2}^{n}

- Comments
- SLAC $d_{2}{ }^{\mathrm{n}}$ from $d_{2}{ }^{\mathrm{d}} / \gamma_{\mathrm{D}}-d_{2}{ }^{\mathrm{p}}$
- C-N moments only
- $\gamma_{\mathrm{D}}=D$-state correction

d_{2}^{n}

- Comments
$-\operatorname{SLAC} d_{2}{ }^{\mathrm{n}}$ from $d_{2}{ }^{\mathrm{d}} / \gamma_{\mathrm{D}}-d_{2}{ }^{\mathrm{p}}$
- C-N moments only
- $\gamma_{D}=D$-state correction
- RSS Nachtmann moment
- dark blue point shows resonances only
- $d_{2}{ }^{\mathrm{n}}$ from p, d moments has only $O(1 \%)$ subtraction error (no smearing)

A. Deur, S. Brodsky and G. de Terramond arXiV:1807.05250v2 [hep-ph] 19 Dec 2018 RSS PRL105, 101601 (2010)

The Future

- Clear results of small but non-zero twist-3 but questions remain:
- unexpected proton $d_{2}<0$
- higher Q^{2} neutron results have large errors
- Need updated Lattice QCD calculations: most recent is from 2005
- Use SANE results in global fits to PDF's
- Need higher precision proton g_{2} : SANE's goal was partially limited by experimental issues
- Need deuteron "SANE": for singlet d_{2} and to compare with ${ }^{3} \mathrm{He}$

Extras

DIS Transverse $\operatorname{Spin} \operatorname{SF} \boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}$

- $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{F}_{1} \boldsymbol{A}_{2} / \gamma$ measures spin distribution normal to γ^{*}
- $\operatorname{SANE}\left\langle\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}(x>.3)>=0.023 \pm 0.006\right.$

- SANE SLAC $x<.3 * x>.3$
- $-C^{\prime} / Q^{2}-C / Q$
- $\boldsymbol{g}_{\mathrm{T}}$ evolution non-trivial: no NLO simplification (NPB 608 (2001) 235)
- \boldsymbol{d}_{2} 's pQCD evolution is known 39 (Shuryak-Vainshtein)

BETA and HMS data

- $Q^{2}-x$ phase space of BETA's 80° data

- Central kinematics of HMS inclusive asymmetry data
- cut on $\mathrm{E}^{\prime} \geq 1.3 \mathrm{GeV}$

Proton world $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$ data before SANE

- Two beam energies: 5.9 GeV , 4.7 GeV
- Very good high \boldsymbol{x} coverage with detector at 40°

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\Gamma_{2}=0=\Gamma_{2}^{\mathrm{ww}}+\bar{\Gamma}_{2}+\Gamma_{2}(\mathrm{el})$
- dispersion relation not from OPE, free from gluon radiation, TMC's
- twist-2 part $\Gamma_{2}^{\mathrm{ww}} \equiv 0$
- BC is higher-twist + elastic

$$
\begin{aligned}
& -\Gamma_{2}=\bar{\Gamma}_{2}(\mathrm{unm} .)+\bar{\Gamma}_{2}(\text { measur. })+\Gamma_{2}(\mathrm{el}) \\
& -\Delta \bar{\Gamma}_{2}=\Gamma_{2}-\bar{\Gamma}_{2}(\mathrm{u})=\bar{\Gamma}_{2}(\mathrm{~m})+\Gamma_{2}(\mathrm{el})
\end{aligned}
$$

- $\Delta \bar{\Gamma}_{2} \neq 0$: assuming BC , implies significant HT at $x<x_{\text {min }}$, or, if twist- $3 \sim 0$ at low x,

4/12/19 - BC fails: isospin dependence? nuclear effects?

Big Electron Telescope Array - BETA

- BETA specs
- Effective solid angle 0.194 sr
- Energy resolution

$$
10 \% / \sqrt{ } E(\mathrm{GeV})
$$

- 1000:1 pion rejection
- angular resolution $\sim 1 \mathrm{mr}$
- Non-magnetic detector
- detects DIS e and $e^{+} e^{-}$pairs: need to cut on minimum E^{\prime}
- Target field helps sweep lowest E background ($180 \mathrm{MeV} / \mathrm{c}$ cutoff)

Kinematics Space at JLab

A_{1}, A_{2}

- Spin asymmetries A_{1}, A_{2}
W. Armstrong et al., PRL 122, 022002 (2019)

