A Monte Carlo Analysis of Nuclear PDFs with Neural Networks

[arXiv:1904.00018]

Jacob Ethier

In collaboration with R. Abdul Khalek and J. Rojo 8th Workshop of the APS Topical Group on Hadronic Physics April 10th, 2019

NW

Netherlands Organisation for Scientific Research

Motivation

• Significant deviations from unity in measurements of nuclear to nucleon structure function ratios (EMC effect)

→ Structure functions of the nucleus cannot be described as a sum of the free nucleon structure functions (up to Fermi motion corrections)

• Origin of EMC effect still not well understood

J.J. Aubert et. al. Phys. Lett. B 123B (1983)

→ Determining the modification of free nucleon PDFs in nuclei can provide crucial insight to various nuclear effects

Motivation

• nPDFs can reveal onset of non-linear evolution effects at low x and Q^2

 \rightarrow Enhancement for heavier nuclei – saturation region expected to begin at larger x

• Can be determined from ratio of nuclear to proton PDFs:

• Precise determination of nuclear PDFs is highly relevant for the upcoming Electron-Ion Collider

Global QCD Analyses

• Method to extract information of the nonperturbative dynamics associated with nuclei structure within QCD

<u>Factorization</u> \rightarrow separation of short and long distance physics in pQCD expressions of experimental observables, e.g. for electron-proton scattering

$$\begin{array}{ll} \text{Unpolarized deep inelastic} \\ \text{scattering (DIS) observable} \\ \ell + (p,d) \rightarrow \ell' + X \end{array} & d\sigma(x,Q^2) \simeq \sum_f \int_x^1 \frac{d\xi}{\xi} f\left(\frac{x}{\xi},Q^2\right) \underbrace{d\hat{\sigma}_f(\xi,Q^2)}_{\text{Hard scattering coefficient}} \\ \end{array}$$

- Collinear factorization → distributions depend on the fraction of longitudinal proton momentum
- The same formalism can be used to study modification of PDFs in nuclei

$$f^{(p)}(x,Q^2) \to f^{(p/A)}(x,Q^2,A)$$

• Nuclear PDFs are extracted from global data of lepton-nucleus and hadronnucleus collisions using QCD factorization

Global QCD Analyses

Standard determination of nonperturbative functions form global QCD analyses:
 → Objects are parameterized xf(x) = Nx^a(1-x)^b(1+c√x+dx)
 → Parameters are optimized with a least-squares fit

 $\chi^{2} = \sum_{e}^{N_{exp}} \sum_{i}^{N_{data}} \frac{(D_{i}^{e} - T_{i})^{2}}{(\sigma_{i}^{e})^{2}}$

• Issues with performing single chi-squared minimization

 \rightarrow Uncertainties computed by a Hessian method introduce tolerance criteria (uncertainties inflated by arbitrary factor)

 \rightarrow Parameters difficult to constrain are typically fixed

 \rightarrow Highly non-linear chi-squared function = many local minima that a single fit can be trapped

• Nuclear PDFs require proton PDF as boundary condition → typically taken from previous global analyses (which often make different theoretical/methodological choices!)

 \rightarrow Need a consistent theoretical framework and robust fitting procedure to reliably determine nuclear PDF central values and uncertainties

nNNPDF1.0 Analysis

- Includes all available neutral current DIS data from CERN, SLAC, and FNAL experiments
 - → Kinematic cuts: $W^2 > 12.5 \text{ GeV}^2$

 $Q^2 > 3.5~{\rm GeV}^2$

- Significant range in atomic mass values (A from 2 to 208)
- 451 total data points

Experiment	A_1/A_2	$\mathrm{N}_{\mathrm{dat}}$
SLAC E-139	$^{4}\mathrm{He}/^{2}\mathrm{D}$	3
NMC 95, re.	$^{4}\mathrm{He}/^{2}\mathrm{D}$	13
NMC 95	$^{6}\mathrm{Li}/^{2}\mathrm{D}$	12
SLAC E-139	$^{9}\mathrm{Be}/^{2}\mathrm{D}$	3
NMC 96	$^{9}\mathrm{Be}/^{12}\mathrm{C}$	14
EMC 88, EMC 90	$^{12}{\rm C}/^{2}{\rm D}$	12
SLAC E-139	$^{12}{ m C}/^{2}{ m D}$	2
NMC 95, NMC 95, re.	$^{12}{ m C}/^{2}{ m D}$	26
FNAL E665	$^{12}C/^{2}D$	3
NMC 95, re.	$^{12}\mathrm{C}/^{6}\mathrm{Li}$	9
BCDMS 85	$^{14}{ m N}/^{2}{ m D}$	9
SLAC E-139	$^{27}\mathrm{Al}/^{2}\mathrm{D}$	3
NMC 96	$^{27}Al/^{12}C$	14
SLAC E-139	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	2
NMC 95, re.	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	12
EMC 90	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	3
FNAL E665	$^{40}\mathrm{Ca}/^{2}\mathrm{D}$	3
NMC 95, re.	$^{40}\mathrm{Ca}/^{6}\mathrm{Li}$	9
NMC 96	$^{40}{ m Ca}/^{12}{ m C}$	23
EMC 87	$^{56}\mathrm{Fe}/^{2}\mathrm{D}$	58
SLAC E-139	$^{56}\mathrm{Fe}/^{2}\mathrm{D}$	8
NMC 96	$^{56}\mathrm{Fe}/^{12}\mathrm{C}$	14
BCDMS 85 , BCDMS 87	$^{56}\mathrm{Fe}/^{2}\mathrm{D}$	16
EMC 88, EMC 93	$^{64}\mathrm{Cu}/^{2}\mathrm{D}$	27
SLAC E-139	$^{108}\mathrm{Ag}/^{2}\mathrm{D}$	2
EMC 88	$^{119}\mathrm{Sn}/^{2}\mathrm{D}$	8
NMC 96, Q^2 dependence	$^{119}{\rm Sn}/^{12}{\rm C}$	119
FNAL E665	$^{131}{ m Xe}/^{2}{ m D}$	4
SLAC E-139	$^{197}\mathrm{Au}/^{2}\mathrm{D}$	3
FNAL E665	$^{208}\mathrm{Pb}/^{2}\mathrm{D}$	3
NMC 96	$^{208}{\rm Pb}/^{12}{\rm C}$	14
Total		451

nNNPDF1.0 Fitting Methodology

- Based on NNPDF framework:
 - \rightarrow PDFs modeled with neural networks (removes parameterization bias)
 - \rightarrow Monte Carlo sampling of parameter space
 - \rightarrow Gaussian smearing of experimental data
 - \rightarrow Cross-validation with early stopping (prevents overfitting)

 \rightarrow Many fits are performed to obtain sample distribution that represents the parent probability distribution of nPDFs

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Experimental measurements

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Experimental measurements

Theoretical predictions (functions of the parameterized PDFs)

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Experimental measurements

(

Theoretical predictions (functions of the parameterized PDFs)

Covariance matrix – encodes all uncorrelated and correlated experimental uncertainties N_{add}

$$\begin{aligned} (\operatorname{cov}_{t_0})_{ij}^{(\exp)} &\equiv \left(\sigma_i^{(\operatorname{stat})} R_i^{(\exp)}\right)^2 \delta_{ij} + \left(\sum_{\alpha=1}^{\operatorname{add}} \sigma_{i,\alpha}^{(\operatorname{sys},a)} \sigma_{j,\alpha}^{(\operatorname{sys},a)} R_i^{(\exp)} R_j^{(\exp)} + \sum_{\beta=1}^{N_{\operatorname{mult}}} \sigma_{i,\beta}^{(\operatorname{sys},m)} \sigma_{j,\beta}^{(\operatorname{sys},m)} R_i^{(\operatorname{th},0)} R_j^{(\operatorname{th},0)} \right) \end{aligned}$$

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right)$$
$$+ \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Experimental measurements

Theoretical predictions (functions of the parameterized PDFs)

Covariance matrix – encodes all uncorrelated and correlated experimental uncertainties $\left(\left(1 + 1 \right) \right)^2 = \left(\frac{N_{add}}{N_{add}} \right)^2$

$$(\operatorname{cov}_{t_0})_{ij}^{(\exp)} \equiv \left(\sigma_i^{(\operatorname{stat})} R_i^{(\exp)}\right)^2 \delta_{ij} + \left(\sum_{\alpha=1}^{\operatorname{add}} \sigma_{i,\alpha}^{(\operatorname{sys},a)} \sigma_{j,\alpha}^{(\operatorname{sys},a)} R_i^{(\exp)} R_j^{(\exp)}\right)^2 \delta_{ij}$$

• t₀ prescription: multiply correlated multiplicative uncertainties by central theory values from previous fit iterations (iterated until convergence)

$$+\sum_{\beta=1}^{N_{\text{mult}}} \sigma_{i,\beta}^{(\text{sys,m})} \sigma_{j,\beta}^{(\text{sys,m})} R_i^{(\text{th},0)} R_j^{(\text{th},0)} \right)$$

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Boundary condition (imposed for x from 10^{-3} to 0.7)

• Minimize the cost function:

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{\text{dat}}} \left(R_{i}^{(\text{exp})} - R_{i}^{(\text{th})}(\{f_{m}\}) \right) (\text{cov}_{t_{0}})_{ij}^{-1} \left(R_{j}^{(\text{exp})} - R_{j}^{(\text{th})}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}$$

Boundary condition (imposed for x from 10^{-3} to 0.7)

 \rightarrow Free nucleon PDFs must be reproduced at A=1

$$f(x, Q, A = 1) = \frac{1}{2} \left[f_p(x, Q^2) + f_n(x, Q^2) \right]$$

- → NNPDF3.1 proton PDF fits are used as baseline (consistent methodology and theoretical assumptions)
- → Central values and uncertainties reproduced at minimization level "simultaneous" fit of proton and nuclear PDFs!

Optimization with TensorFlow

- Open source machine learning software library developed by Google's AI organization
- Highly optimized numerical computations + machine learning tools

• Gradients of cost function (chi-squared) computed by reverse-mode automatic differentiation

- Parameters are optimized by the Adapative Moment Estimation (ADAM) algorithm – improved stochastic gradient descent (SGD)
- Improved performance over numeric genetic algorithm (NGA) optimization used in previous NNPDF analyses

Data vs Theory – EMC + NMC

Data vs Theory – NMC Sn/C

Data vs Theory – BCDMS + SLAC + FNAL

Uncertainties computed as 90% CL range – central value taken to be midpoint

For every value of x: $f_1 \leq f_2 \leq \ldots \leq f_{N_{\text{rep}}-1} \leq f_{N_{\text{rep}}}$

90% CL range:

 $\left[f_{0.05\,N_{\rm rep}}, f_{0.95\,N_{\rm rep}}\right]$

Only linear combination of quark singlet and octet distributions constrained by NC DIS

$$\Sigma = \sum_{i}^{n_f} (f_i + \bar{f}_i) = \sum_{i}^{n_f} f_i^+$$
$$T_8 = u^+ + d^+ - 2s^+$$

Ratio to A=1 result – correlations between nPDFs included

$$R_f^{(k)} = \frac{f^{(N/A)(k)}(x, Q^2, A)}{f^{(N)(k)}(x, Q^2)}$$

Ratio to A=1 result – $\Sigma + \frac{1}{4}T_8$ 1.2correlations between nPDFs $f^{(N/A)}/f^N$ included ⁴He 0.8 $R_f^{(k)} = \frac{f^{(N/A)(k)}(x, Q^2, A)}{f^{(N)(k)}(x, Q^2)}$ ⁶⁴Cu ²⁰⁸Pb 0.6 3 $Q^2 = 10 \text{ GeV}^2$ g $f^{(N/A)}/f^N$ Nuclear effects visible in 2quark combination – 1 negligible for A=4 0 -10.1 0.3 0.5 0.7 0.9 10^{-3} 0.01 0.1

 \mathcal{X}

 \mathcal{X}

Ratio to A=1 result – correlations between nPDFs included

$$R_f^{(k)} = \frac{f^{(N/A)(k)}(x, Q^2, A)}{f^{(N)(k)}(x, Q^2)}$$

Nuclear effects visible in quark combination – negligible for A=4

Larger uncertainties for gluon distribution – consistent with unity

All distributions normalized by nNNPDF1.0 A=1 distribution

90% CL computed with Hessian method for nCTEQ and EPPS uncertainties

Significant differences in uncertainties!

Can test other boundary conditions – NNPDF3.0+LHCb PDF set with smaller uncertainties at low *x*

Remarkable impact from boundary condition choice – proton PDF constraints relevant for low-A nPDF extraction!

Impact of the EIC

- Analysis of EIC pseudodata extended kinematic coverage
- Two scenarios: low energy (5 GeV) vs high energy (20 GeV) electron beam

Scenario	A	E_e	E_A/A	$Q_{ m max}^2$	x_{\min}	$N_{\rm dat}$
eRHIC_5x50C	12	$5 \mathrm{GeV}$	$50 {\rm GeV}$	$440 \ \mathrm{GeV^2}$	0.003	50
$eRHIC_5x75C$	12	$5 \mathrm{GeV}$	$75 {\rm GeV}$	$440 \ {\rm GeV^2}$	0.002	57
$eRHIC_5x100C$	12	$5~{ m GeV}$	$100 { m GeV}$	$780 \ { m GeV^2}$	0.001	64
eRHIC_5x50Au	197	$5 \mathrm{GeV}$	$50 {\rm GeV}$	$440 \ {\rm GeV^2}$	0.003	50
eRHIC_5x75Au	197	$5 \mathrm{GeV}$	$75 {\rm GeV}$	$440 \ {\rm GeV^2}$	0.002	57
eRHIC_5x100Au	197	$5 { m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV^2}$	0.001	64
eRHIC_20x50C	12	$20 { m GeV}$	$50 \mathrm{GeV}$	$780 \ {\rm GeV^2}$	0.0008	75
$eRHIC_20x75C$	12	$20 { m GeV}$	$75 {\rm GeV}$	$780 \ { m GeV^2}$	0.0005	79
eRHIC_20x100C	12	$20 { m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV^2}$	0.0003	82
eRHIC_20x50Au	197	$20 { m GeV}$	$50~{\rm GeV}$	$780 \ { m GeV^2}$	0.0008	75
eRHIC_20x75Au	197	$20 { m GeV}$	$75 {\rm GeV}$	$780 \ { m GeV^2}$	0.0005	79
eRHIC_20x100Au	197	$20 { m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV^2}$	0.0003	82

- Pseudodata constructed with nNNPDF1.0 PDF sets for carbon and gold nuclei
- Uncertainty projections from analysis of E.C. Aschenaur et al. [arXiv:1708.05654]

Impact of the EIC

Significant reduction of nPDF uncertainties at low-*x* for large A – particularly for higher energy option!

Summary and Outlook

- Machine learning + Monte Carlo methods are important for robust extractions of nPDFs and their uncertainties
- Methodology improvements in nuclear PDF analysis:

 \rightarrow Neural networks optimized with stochastic gradient descent in TensorFlow

- Highlights from first Monte Carlo nPDF fit
 - → Significant impact of A=1 boundary condition for low-A nuclei
 - → High energy EIC scenario can constrain nPDFs down to $x \sim 10^{-4}$
- Available NC DIS data not sensitive to separation of singlet and octet distributions

→ Inclusion of additional observables (new LHC p+Pb observables, CC DIS, Drell-Yan) for flavor separation and uncertainty reduction is needed

BACKUP SLIDES

Neutral Current (NC) DIS – Theory

• Experimental observables given as ratios of cross sections/structure functions

$$\frac{d^2 \sigma^{\rm NC}(x,Q^2,A_2)/dx dQ^2}{d^2 \sigma^{\rm NC}(x,Q^2,A_1)/dx dQ^2} \simeq \frac{F_2(x,Q^2,A_2)}{F_2(x,Q^2,A_1)} = R_{F_2}\left(x,Q^2,A_1,A_2\right)$$

• Nuclear effects encoded in PDFs so that

$$F_2(x, Q^2, A) = \frac{1}{A} (ZF_2^{(p/A)} + (A - Z)F_2^{(n/A)})$$

(Isoscalar nuclei): $F_2(x, Q^2, A) = \frac{1}{2} (F_2^{(p/A)} + F_2^{(n/A)})$

• In collinear factorization:

 $F_2^{(\mathrm{NLO})}(x,Q^2,A) = C_{\Sigma} \otimes \Sigma(x,Q^2,A) + C_{T_8} \otimes T_8(x,Q^2,A) + C_g \otimes g(x,Q^2,A)$

Neutral Current (NC) DIS – Theory

• Experimental observables given as ratios of cross sections/structure functions

$$\frac{d^2 \sigma^{\rm NC}(x,Q^2,A_2)/dx dQ^2}{d^2 \sigma^{\rm NC}(x,Q^2,A_1)/dx dQ^2} \simeq \frac{F_2(x,Q^2,A_2)}{F_2(x,Q^2,A_1)} = R_{F_2}\left(x,Q^2,A_1,A_2\right)$$

• Nuclear effects encoded in PDFs so that

$$F_2(x, Q^2, A) = \frac{1}{A} (ZF_2^{(p/A)} + (A - Z)F_2^{(n/A)})$$

(Isoscalar nuclei): $F_2(x, Q^2, A) = \frac{1}{2} (F_2^{(p/A)} + F_2^{(n/A)})$

• In collinear factorization:

 $F_2^{(\mathrm{NLO})}(x,Q^2,A) = C_{\Sigma} \otimes \Sigma(x,Q^2,A) + C_{T_8} \otimes T_8(x,Q^2,A) + C_g \otimes g(x,Q^2,A)$

Coefficient functions (including relevant charge factors)

Neutral Current (NC) DIS – Theory

• Experimental observables given as ratios of cross sections/structure functions

$$\frac{d^2 \sigma^{\rm NC}(x,Q^2,A_2)/dx dQ^2}{d^2 \sigma^{\rm NC}(x,Q^2,A_1)/dx dQ^2} \simeq \frac{F_2(x,Q^2,A_2)}{F_2(x,Q^2,A_1)} = R_{F_2}\left(x,Q^2,A_1,A_2\right)$$

• Nuclear effects encoded in PDFs so that

$$F_2(x, Q^2, A) = \frac{1}{A} (ZF_2^{(p/A)} + (A - Z)F_2^{(n/A)})$$

(Isoscalar nuclei): $F_2(x, Q^2, A) = \frac{1}{2} (F_2^{(p/A)} + F_2^{(n/A)})$

• In collinear factorization:

 $F_2^{(\mathrm{NLO})}(x,Q^2,A) = C_{\Sigma} \otimes \Sigma(x,Q^2,A) + C_{T_8} \otimes T_8(x,Q^2,A) + C_g \otimes g(x,Q^2,A)$

Coefficient functions (including relevant charge factors)

0

Nuclear PDFs (in DGLAP evolution basis)

$$\Sigma(x, Q^2, A) \equiv \sum_{i=1}^{n_f=3} f_i^+(x, Q^2, A) \quad (\text{quark singlet}),$$

$$T_3(x, Q^2, A) \equiv (u^+ - d^+) (x, Q^2, A) \quad (\text{quark triplet}) ,$$

$$T_8(x, Q^2, A) \equiv (u^+ + d^+ - 2s^+) (x, Q^2, A) \quad (\text{quark octet})$$

nPDF Parameterization

- Single NN with architecture 3-25-3
- Input scale: $Q_0 = 1$ GeV
- PDFs parameterized with NN output multiplied by preprocessing function

$$x\Sigma(x, Q_0, A) = x^{-\alpha_{\Sigma}} (1 - x)^{\beta_{\sigma}} \xi_1^{(3)}(x, A)$$

$$xT_8(x, Q_0, A) = x^{-\alpha_{T_8}} (1 - x)^{\beta_{T_8}} \xi_2^{(3)}(x, A)$$

$$xg(x, Q_0, A) = B_g x^{-\alpha_g} (1 - x)^{\beta_g} \xi_3^{(3)}(x, A)$$

- Exponents treated as free parameters
- Momentum Sum Rule:

nNNPDF1.0

$$x = \xi_1^{(1)}$$

 $x = \xi_1^{(1)}$
 $y_2^{(2)}$
 $\xi_2^{(2)}$
 $\xi_1^{(3)}$
 $\xi_1^{(3)}$
 $\xi_1^{(3)}$
 $\xi_1^{(3)}$
 $\xi_2^{(3)}$
 $\xi_3^{(3)}$
 $\xi_3^{(3)}$

$$\int_0^1 dx x (\Sigma(x,A) + g(x,A)) = 1 \rightarrow B_g = \frac{1 - \int_0^1 dx x \Sigma(x,A)}{\int_0^1 dx x g(x,A)}$$