Current Challenges in Neutrino Nucleus Scattering

What do we know about the kinematic region $W_H > M_{\Delta}$?

NuSTEC Workshop on SIS/DIS: <u>https://indico.cern.ch/event/727283/overview</u>

10 April 2019

Jorge G. Morfín Fermilab

Outline

 $W^2 = M^2 + Q^2 (1 - x) / x$ is the Effective Mass of the Hadronic System

- ♦ v Shallow Inelastic Scattering (SIS) M_{Δ} < W < 2.0 GeV
 - ▼ Higher W resonances
 - ▼ Duality
 - Non-perturbative / perturbative QCD Interface
- v Deep Inelastic Scattering W > 2.0 GeV & $Q^2 > 1$ GeV²
 - ▼ Nuclear Parton Distribution Functions (nPDFs): $v + A vs. e/\mu + A$
 - "universal PDFs" and factorization

Inclusive SIS/DIS in Neutrino Event Generators The General Landscape – Comparison of Generators

- By far the majority of contemporary studies in v-nucleus interactions have been of Quasielastic and Δ production that is W ≤ 1.4 GeV
- However, there is plenty of activity going on above this W cut!

For example with a 6 GeV v on Fe – excluding QE.

C. Bronner- 2016

Shallow-Inelastic Scattering: $M_{\Delta} < W < 2.0 \text{ GeV}$

- Why study Shallow-Inelastic Scattering?
 - ▼ How does the physics (language) of quark/partons from DIS meet the physics of resonances nucleons and pions. → quark-hadron duality.
 - ▼ Do the so-called "partonic" nuclear effects of DIS (shadowing, anti-shadowing & EMC effect) extend down into the SIS region or do they suddenly/slowly turn off.
 - ▼ 50 % of the expected events of the DUNE neutrino oscillation experiment, major HEP project, are in the SIS + DIS region (W > 1.4 GeV)!
- How do we study it? MINERvA starting the high-statistics experimental study of the following!
 - Measure total and differential cross sections in the SIS region off <u>nuclei</u> and extract the corresponding "(nuclear) structure functions" F_i(x,Q²).
 - Compare cross sections and $F_i(x,Q^2)$ from the DIS with the SIS equivalents.
 - Determine bound nucleon (so-called "partonic") nuclear effects by ratios of σ or F_i off nuclei in the SIS region...

What About the Theory of Inclusive SIS studies? What is "Quark-Hadron Duality"?

- Quark-hadron duality is a general feature of strongly interacting landscape.
 - ▼ Relationships between meson–nucleon and quark–gluon degrees of freedom.
- Duality is an important concept for verifying the fundamental models that neutrino simulation generators employ (GENIE, NEUT and NuWro).
 - Quark-hadron duality originally studied and confirmed in e-N scattering how about v-N scattering?
- There is essentially no high-statistics v-N/A experimental data with 1.4 < W < 2.0 GEV for tests!
 - ▼ MINERvA is working to fix this for v-A!
- For now we rely on theoretical models of this region for an assessment of duality in v-A scattering.

What does Q-H Duality "Look Like" Experimentally?

Early Jefferson Lab 6 GeV e-Nucleon Study

$$\xi = \frac{2x}{(1 + \sqrt{1 + 4m_N^2 x^2/Q^2})}$$

So-called Nachtmann variable to account for Target Mass Effects

Quantitative test of Q-H Duality: e Nucleon

• Ratio of the strength of the SIS to DIS region. Ideal Duality I = 1.0

$$\mathcal{I}_{|}(Q^{2}, Q_{DIS}^{2}) = \frac{\int_{\xi_{min}}^{\xi_{max}} d\xi F_{j}^{RES}(\xi, Q^{2})}{\int_{\xi_{min}}^{\xi_{max}} d\xi F_{j}^{DIS}(\xi, Q_{DIS}^{2})} \qquad \xi = -\frac{2x}{(1 + \sqrt{1 + 4m_{N}^{2}x^{2}/Q^{2}})}$$

• Using Giessen fit to e-N scattering $-F_2^{eN}(\xi)$ for values of Q² indicated on spectra compared to LO DIS QCD fit at Q² = 10 GeV². Value of integral I(Q²).

Now Nucleus not Nucleon Qualitative look at Q-H Duality: e A

 Now e-nucleus – individual resonances visible in e-P, somewhat less in e-D and mostly smeared out by e-Fe. Curved line is from MRST global DIS fits with EMC effect for Fe applied.

Speaking of the EMC Effect.... Found in the eA Resonance Region Further evidence of Quark-Hadron Duality?

The solid red circles are Jefferson Lab data taken in the resonance region 1.2 < W2 < 3.0 GeV and Q² = 4 GeV². All other data points from DIS region.

Now for Neutrinos

NO high-statistics Experimental Data available - turn to Theory

When using the <u>Rein-Sehgal Model</u> for v-N Resonances (J. Sobczyk et al.-NuWro)

• Comparison to Rein-Sehgal structure functions for n, p and N at $Q^2 = 0.4$, 1.0 and 2.0 GeV² with the LO DIS curve at 10 GeV².

The I integral for the R-S model for resonances off neutron (dotted), proton (solid) and isoscalar (dashed). Real problems for A with large neutron excess!

10

Summary: Quark-Hadron Duality for e-N/A and v-N/A

- $F_2^{ep en}$: Qualitative and quantitative duality HOLDS in electron–nucleon scattering.
- $F_2^{\nu p \nu n}$: In neutrino-nucleon scattering, using the R-S model, duality <u>roughly</u> holds for proton but NOT for neutron and NOT for isoscalar $F_2^{\nu N}$.
- F_2^{eA} : Very different story, looks good but quantitative duality check in e A not as good as the nucleon.
- $F_2^{\nu A}$: Not at all clear how duality works here, particularly in nuclei with an excess number of neutrons.
- In general for neutrinos, the resonance structure functions for proton are much larger than for neutrons and in the case of <u>DIS structure functions</u> the situation is opposite. Although to some extent model dependent, a general tendency is that for larger W, <u>DIS structure functions are much larger than the resonance</u> contribution at lower W.
- There is now fresh evidence that these so-called DIS "partonic" nuclear effects (EMC effect) continue down into the SIS region with W < 2.0 GeV!
- MINERvA's goal is to make the first experimental measurement of inclusive production in the SIS region.

Duality and Higher Twist

- Does the fact that duality holds so well for e N resonance scattering compared to LO, leading twist DIS results suggest there is little room for higher twist contributions for Q² > 1 GeV² and x < 0.65??
- Multiple studies of this available in the literature and all seem to agree with the above statement. For example from: A. Fantoni, N. Bianchi, and S. Liuti. Quark-hadron duality and higher twist contributions in structure functions. AIP Conf. Proc., 747(1):126–129, 2005.

Deep-Inelastic Scattering (Q² > 1 GeV² and W > 2 GeV) Studied for decades with e/µ + Nucleons and Nuclei Scattering
→ PDFs for bound nucleon NOT the same as for free nucleon!!

- In early CTEQ free nucleon PDF fits *terrible tension* at low-x when including ν/ν̄ corrected with e/μ NCF. Had to ignore ν / ν̄ !!
- Hmmm are the neutrino nuclear correction factors <u>different</u> than the charged lepton nuclear correction factor?

nCTEQ: Determine the **neutrino nuclear correction factors** using NuTeV and CHORUS $\langle F_2 \rangle (v + v)$ Structure Functions +

F₂ Structure Functions from NuTeV (v Fe) and CHORUS (v Pb) each compared to CCFR (v Fe) and CDHSW (v Fe)

Comparison of NuTeV with Global Fits for F₂

Nuclear Parton Distribution Functions from v DIS (nCTEQ Global Fit to Neutrino Data)

Phys.Rev. D77 (2008) 054013

nCTEQ uses:

- ▼ the NuTeV double differential cross sections NOT the structure functions F₂ and xF₃ that require additional theoretical assumptions to extract.
- ▼ the full NuTeV covariant error matrix

nCTEQ uses 8 Neutrino data sets

- NuTeV cross section data: vFe, \overline{vFe}
- **v** NuTeV dimuon off Fe data: $v \& \overline{v}$
- **•** CHORUS cross section data: vPb, $\overline{v}Pb$
- **\checkmark** CCF*R* dimuon off Fe data: $\mathbf{v} \& \overline{\mathbf{v}}$

• Directly determine Nuclear Correction Factors for v & \overline{v}

Nuclear Correction Factors: v and $\overline{v} - F_2(vFe) / F_2[v(n+p)]$

Could NOT find a compromise (χ^2 with tolerance) fit with both v and e/µ results using cross sections and NuTeV covariant errors.

17

Other Groups find similar results!

Also there are global fitting groups that do NOT find this result.

Same NCF determined by Japanese Collaboration: Kumano et al.

 JLab Centered Collaboration sees same effect looking at measured F₂ (not ratios) from v Fe compared directly to e Fe. 15% effect.

We Now Have A New DIS Player - What does MINERvA see? **Reminder from NuTeV: The Q² distribution within an x bin is essential!** An nCTEQ low-Q² Prediction for MINERvA

What does MINERvA see? LE DIS Cross Section Ratios – dσ/dx. Much improved ME beam ratios soon to be released! The Q² distribution within an x bin is essential!

- The shape of the data at low x, especially with lead is consistent with nuclear shadowing at <x>
 = (0.07) where negligible shadowing is expected with e/μ Fe.
- **<u>nCTEQ</u>** fixed low-Q² (1.7 GeV²) points are shown as an example.

Can the **neutrino nuclear correction factors be** <u>different</u> than the charged lepton nuclear correction factor?

Good reason to consider nuclear effects are DIFFERENT in ν - A.

Presence of axial-vector current. Different nuclear effects for valance and sea --> different shadowing for xF₃ compared to F₂.

Models predicting a difference between ν A and e/μ A

- ▼ S. Brodsky, I. Schmidt, J. Yang PRD 70 (2004) 116003
- ▼ J. Qiu, I. Vitev PLB 587 (2004) 52
- ▼ S. Kulagin, R. Petti PRD 76 (2007) 094023

Overall Summary and Conclusions

- Need to carefully understand the concept of "quark-hadron duality" seemingly NOT exhibited by ν and ν̄ on nuclei in the same way as e and μ on nuclei! <u>Neutrino event generator assumed behavior in the SIS region uses this concept</u> <u>for verification.</u>
- There are indications from experiments on Fe and Pb that v and \overline{v} nuclear parton distributions are different than those determined by $e/\mu Fe/Pb$ experiments. Also found by Kumano's group and Jlab studies of F_2 in e-Fe compare to v-Fe.
- Soon to be a higher energy, much reduced statistical and systematic error result for these neutrino nuclear correction factor ratios from the <u>MINERvA</u> ME beam DIS analysis.
- Most clearly, different shadowing / antishadowing effects in v-A compared to e/µ−A → different nPDFs for v-A compared to e/µ−A.
 No universal nPDFs??

Additional Details

SIS/DIS Regions in Generators

Neutrino interactions in resonance region beyond $\Delta(1232)$ is much more difficult to understand than in $\Delta(1232)$ region

- <u>Experimentally</u> we are limited to the low-statistics & considerable systematics of early bubble chamber exposures from the 70's and 80's. We need a modern high-statistics
 v H/D scattering experiment covering the SIS/DIS regions!
- <u>Theoretically</u>: Predominantly use the Rein-Sehgal model from early 80's for this region. Modern take S. Nakamura, "Dynamical coupled-channels approach to Resonance Region beyond Δ(1232)"

	$\Delta(1232)$ region	Beyond $\Delta(1232)$ region ($W \leq 2$ GeV)				
Resonance	$\Delta(1232)$ dominates No other resonances	No single resonance dominate Several comparable resonances overlap				
Non-resonant Much smaller than $\Delta(1232)$ ChPT works \rightarrow well-controlled		Comparable to resonant contributions ChPT not work				
Relative phases among mechanisms (fairly) well-controlled		Crucially important but not easy to control				
Coupled-channel	s Only πN	πN and $\pi\pi N$ are comparable and strongly coupled				
		ηN , KA, K Σ channels are also coupled	26			

Quantitative test of Q-H Duality: e Nucleon

• Ratio of the strength of the SIS to DIS region. Ideal Duality I = 1.0

0.9 SIS DIS

• Using Giessen fit to e-N scattering $-F_2^{eN}(\xi)$ for values of Q² indicated on spectra compared to LO DIS QCD fit at Q² = 10 GeV². Value of integral I(Q²).

Q2=0.4 Q2=1

Duality with v Fe Scattering

FIGURE 5. (color online) The computed resonance curves $F_2^{v^{56}Fe}/56$ as a function of ξ , calculated within Ghent(left) and Giessen (right) models for $Q^2 = 0.2, 0.45, 0.85, 1.4$, and 2.4 GeV². The calculations are compared with the DIS data from Refs. [26, 27]. The DIS data refer to measurements at $Q_{DIS}^2 = 7.94, 12.6$ and 19.95 GeV².

Neutrino DIS - The NuTeV Experiment: 800 GeV Protons

> 3 million neutrino/antineutrino events with $20 \le E_v \le 400 \text{ GeV}$ Also CCFR, CDHSW and CHORUS Data sets – NuTeV smallest (correlated) errors!

 $\frac{\partial E}{E} \approx \frac{0.86}{\sqrt{E}}$ -resolution

 Tracking chambers for muon track and vertex $\langle B_{\varphi} \rangle \approx 1.7T, \ p_t \approx 2.4 GeV \ /c$ $\delta(1/p)/(1/p) \sim 11\%$ MCS dominated Always focusing for leading muon

1170 v and 966 v data points with seven correlated systematic errors. To confront leading systematic errors, there was a continuous calibration beam **nCTEQ**: Determine the **neutrino nuclear correction factors** using Deep-Inelastic Scattering $(Q^2 > 1 \text{ GeV}^2 \text{ and } W > 2 \text{ GeV})$ Most "Recent" DIS Experiments

	E _v range (< E _v >)(GeV)	Run	Target A	Ε _μ scale	E _{HAD} scale	Detector
NuTeV CCFR	30-360(120)	96-97	Fe	0.7%	0.43%	Coarse
NOMAD	10-200(27)	95-98	Various (mainly C)			Finest- grained
CHORUS	10-200(27)	95-98	Pb	2%	5%	Fine- grained
MINERvA	2 - 50(6)	10-19	He, C, O, CH, Fe, Pb	2.1-3.2%		Finer- grained

MINERvA is not a "DIS experiment" but we are contributing to DIS studies.

$$\frac{d^2 \sigma^{\nu(\bar{\nu})A}}{dx \, dy} = \frac{G^2 M E}{\pi} \left[\left(1 - y - \frac{M x y}{2E} \right) F_2^{\nu(\bar{\nu})A} + y^2 x F_1^{\nu(\bar{\nu})A} \bigoplus \left(1 - \frac{y}{2} \right) x F_3^{\nu(\bar{\nu})A} \right]$$

Measured F₂ from neutrino experiments is really $\langle F_2 \rangle (v + \overline{v})_{30}$

Nuclear Effects

A Difference in Nuclear Effects of Valence and Sea Quarks?

 Nuclear effects similar in Drell-Yan and DIS for x < 0.1. Then no "anti-shadowing" in D-Y while "anti-shadowing" seen in DIS.