Supersymmetric Features of Hadron Physics and other Novel **Properties of Quantum Chromodynamics from Light-Front** Holography and Superconformal Algebra

with Guy de Tèramond, Hans Günter Dosch, Marina Nielsen, F. Navarra, Liping Zou, S. Groote, S. Koshkarev, C. Lorcè, R. S. Sufian, A. Deur

NATIONAL ACCELERATOR LABORATORY

GHP-APS

8th Workshop of the APS Topical Group on Hadronic Physics

Denver Thursday, 11 April 2019

The leading Regge trajectory: Δ resonances with maximal J in a given mass range. Also shown is the Regge trajectory for mesons with J = L+S.

E. Klempt and B. Ch. Metsch

Profound Questions for Hadron Physics

- Color Confinement
- Origin of QCD Mass Scale
- Spectroscopy: Tetraquarks, Pentaquarks, Gluonium, Exotic States
- Universal Regge Slopes: n, L, Mesons and Baryons
- Massless Pion: Quark-Antiquark Bound State
- Dynamics and Spectroscopy
- QCD Coupling at all Scales
- QCD Vacuum Do Condensates Exist?

Need a First Approximation to QCD

Comparable in simplicity to Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining

Origin of hadronic mass scale

AdS/QCD Líght-Front Holography Superconformal Algebra

No parameters except for quark masses

$$\kappa = \sqrt{\lambda} = 0.523 \pm 0.024$$

Symmetry for VM first noticed by E. Klempt

Quadratic mass correction for light quark masses

6

4

2

 M^2 (GeV²)

 Δ^{11^+}

 $\begin{bmatrix} 1 \\ \Delta \\ \overline{2} \\ \Delta \\ \overline{2} \\ \Delta \\ \overline{2} \\ \Delta \\ \overline{2} \\ \overline{2} \\ \Delta \\ \overline{2} \\ \overline{2} \\ \Delta \\ \overline{2} \\ \overline{2}$

 $\frac{3}{2}$

• How universal is the semiclassical approximation based on superconformal LFHQCD ?

Best fit for hadronic scale $\sqrt{\lambda}$ from different light hadron sectors including radial and orbital excitations

de Tèramond, Dosch, Lorce', sjb

Fit to the slope of Regge trajectories, including radial excitations

Same Regge Slope for Meson, Baryons: Supersymmetric feature of hadron physics

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau = t + z/c$

Fixed
$$\tau = t + z/c$$

 $\psi(x_i, \vec{k}_{\perp i}, \lambda_i)$
 $x = \frac{k^+}{P^+} = \frac{k^0 + k^3}{P^0 + P^3}$

Invariant under boosts. Independent of P^{μ}

$$\mathbf{H}_{LF}^{QCD}|\psi\rangle = M^2|\psi\rangle$$

Direct connection to QCD Lagrangian

LF Wavefunction: off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

Fixed
$$\tau = t + z/c$$

$$x_{bj} = x = \frac{k^+}{P^+}$$

Invariant under boosts! Independent of P^{μ}

 $= 2p^+F(q^2)$

Front Form

Drell, sjb

Light-Front QCD

Physical gauge: $A^+ = 0$

Exact frame-independent formulation of nonperturbative QCD!

$$\begin{split} L^{QCD} &\to H_{LF}^{QCD} \\ H_{LF}^{QCD} &= \sum_{i} [\frac{m^{2} + k_{\perp}^{2}}{x}]_{i} + H_{LF}^{int} \\ H_{LF}^{int}: \text{ Matrix in Fock Space} \\ H_{LF}^{QCD} |\Psi_{h} \rangle &= \mathcal{M}_{h}^{2} |\Psi_{h} \rangle \\ |p, J_{z} \rangle &= \sum_{n=3} \psi_{n}(x_{i}, \vec{k}_{\perp i}, \lambda_{i}) |n; x_{i}, \vec{k}_{\perp i}, \lambda_{i} \rangle \end{split}$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

LFWFs: Off-shell in P- and invariant mass

$$\begin{array}{c} \text{Light-Front QCD} \\ \mathcal{L}_{QCD} \longrightarrow H_{QCD} \\ \downarrow \\ (H_{LF}^{0} + H_{LF}^{I}) |\Psi \rangle = M^{2} |\Psi \rangle \\ \downarrow \\ [\vec{k}_{\perp}^{2} + m^{2} + V_{\text{eff}}^{LF}] \psi_{LF}(x, \vec{k}_{\perp}) = M^{2} \psi_{LF}(x, \vec{k}_{\perp}) \\ \hline \\ [-\frac{d^{2}}{d\zeta^{2}} + \frac{1 - 4L^{2}}{4\zeta^{2}} + U(\zeta)] \psi(\zeta) = \mathcal{M}^{2} \psi(\zeta) \\ \hline \\ \text{AdS/QCD:} \\ \hline \\ U(\zeta) = \kappa^{4} \zeta^{2} + 2\kappa^{2} (L + S - 1) \end{array}$$

Semiclassical first approximation to QCD

Fixed $\tau = t + z/c$

Coupled Fock states

Elímínate hígher Fock states and retarded interactions

Effective two-particle equation

Azímuthal Basís
$$\zeta, \phi$$

Single variable Equation $m_q = 0$

Confining AdS/QCD potential!

Sums an infinite # diagrams

de Tèramond, Dosch, sjb

Líght-Front Holography

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

 $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

Unique Confinement Potential!

Preserves Conformal Symmetry of the action

Confinement scale:

$$1/\kappa \simeq 1/3 \ fm$$

 $\kappa \simeq 0.5 \ GeV$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Light-Front Schrödinger Equation

Soft-Wall Model
$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$
 $\zeta^2 = x(1-x)b_\perp^2.$

Ads/QCD

Maldacena

 \bullet Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$s^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2),$$

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

d

• Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$: invariant separation between quarks

• The AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit.

AdS/CFT

Dílaton-Modífied Ads

$$ds^{2} = e^{\varphi(z)} \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} x^{\mu} x^{\nu} - dz^{2})$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)} = e^{+\kappa^2 z^2}$
- Color Confinement in z

GHP-APS

Denver Apri 10, 2019

- Introduces confinement scale к
- Uses AdS₅ as template for conformal theory

$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$

Ads Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + U(z)\right]\Phi(z) = \mathcal{M}^2\Phi(z)$$

$$U(z) = \kappa^4 z^2 + 2\kappa^2 (L + S - 1)$$

Derived from variation of Action for Dilaton-Modified AdS₅ **Identical to Single-Variable Light-Front Bound State Equation in** ζ !

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

LF Holography

Baryon Equation

Superconformal Quantum Mechanics

$$\begin{pmatrix} -\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(L_{B} + 1) + \frac{4L_{B}^{2} - 1}{4\zeta^{2}} \end{pmatrix} \psi_{J}^{+} = M^{2}\psi_{J}^{+} \\ \begin{pmatrix} -\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}L_{B} + \frac{4(L_{B} + 1)^{2} - 1}{4\zeta^{2}} \end{pmatrix} \psi_{J}^{-} = M^{2}\psi_{J}^{-} \\ M^{2}(n, L_{B}) = 4\kappa^{2}(n + L_{B} + 1) \qquad \text{S=1/2, P=+} \\ Meson Equation \qquad \lambda = \kappa^{2} \\ \begin{pmatrix} -\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(J - 1) + \frac{4L_{M}^{2} - 1}{4\zeta^{2}} \end{pmatrix} \phi_{J} = M^{2}\phi_{J} \\ M^{2}(n, L_{M}) = 4\kappa^{2}(n + L_{M}) \qquad \text{S=0, P=+} \\ M^{2}(n, L_{M}) = 4\kappa^{2}(n + L_{M}) \qquad \text{S=0, P=+} \\ \text{S=0, I=I Meson is superpartner of S=1/2, I=I Baryon} \end{cases}$$

Meson-Baryon Degeneracy for L_M=L_B+1

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!

Supersymmetry in QCD

- A hidden symmetry of Color SU(3)c in hadron physics
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement

GHP-APS

Denver Apri 10, 2019

Massless Pion in Chiral Limit

Meson Spectrum in Soft Wall Model

$$m_{\pi} = 0$$
 if $m_q = 0$

Pion: Negative term for J=0 cancels positive terms from LFKE and potential

Massless pion!

- Effective potential: $U(\zeta^2) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$
- LF WE

$$\left(-rac{d^2}{d\zeta^2}-rac{1-4L^2}{4\zeta^2}+\kappa^4\zeta^2+2\kappa^2(J-1)
ight)\phi_J(\zeta)=M^2\phi_J(\zeta)$$

• Normalized eigenfunctions $\;\langle \phi | \phi
angle = \int d\zeta \, \phi^2(z)^2 = 1\;$

$$\phi_{n,L}(\zeta) = \kappa^{1+L} \sqrt{rac{2n!}{(n+L)!}} \, \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)$$

Eigenvalues

$$\mathcal{M}_{n,J,L}^2 = 4\kappa^2\left(n+rac{J+L}{2}
ight)$$

$$\vec{\zeta}^2 = \vec{b}_\perp^2 x (1-x)$$

G. de Teramond, H. G. Dosch, sjb

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6$ GeV.

Effective mass from $m(p^2)$

Roberts, et al.

week ending 24 AUGUST 2012

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

Prediction from AdS/QCD: Meson LFWF

Connection to the Linear Instant-Form Potential

Harmonic Oscillator $U(\zeta) = \kappa^4 \zeta^2$ LF Potential for relativistic light quarks

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-Fubini-Furlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- **OPE: Constituent Counting Rules**
- Hadronization at the Amplitude Level: Many Phenomenological Tests

GHP-APS Denver Apri 10, 2019

QCD Lagrangian

$$\mathcal{L}_{QCD} = -\frac{1}{4} Tr(G^{\mu\nu}G_{\mu\nu}) + \sum_{f=1}^{n_f} i\bar{\Psi}_f D_{\mu}\gamma^{\mu}\Psi_f + \sum_{f=1}^{n_f} i_f\bar{\Psi}_f\Psi_f$$

$$iD^{\mu} = i\partial^{\mu} - gA^{\mu} \qquad G^{\mu\nu} = \partial^{\mu}A^{\mu} - \partial^{\nu}A^{\mu} - g[A^{\mu}, A^{\nu}]$$

Classical Chiral Lagrangian is Conformally Invariant

Where does the QCD Mass Scale come from?

QCD does not know what MeV units mean! Only Ratios of Masses Determined

ode Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

• de Alfaro, Fubini, Furlan (dAFF)

$$\begin{aligned} G|\psi(\tau) > &= i\frac{\partial}{\partial\tau}|\psi(\tau) > \\ G &= uH + vD + wK \\ G &= H_{\tau} = \frac{1}{2} \left(-\frac{d^2}{dx^2} + \frac{g}{x^2} + \frac{4uw - v^2}{4}x^2 \right) \end{aligned}$$

Retains conformal invariance of action despite mass scale! $4uw-v^2=\kappa^4=[M]^4$

Identical to LF Hamiltonian with unique potential and dilaton!

$$\begin{bmatrix} -\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta) \end{bmatrix} \psi(\zeta) = \mathcal{M}^2 \psi(\zeta)$$
$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L+S-1)$$

Dosch, de Teramond, sjb

- Identify with difference of LF time $\Delta x^+/P^+$ between constituents
- Finite range
- Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale!

Remarkable Features of Líght-Front Schrödínger Equation

- Relativistic, frame-independent
- •QCD scale appears unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L -- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

GHP-APS Denver Apri 10, 2019

Supersymmetric Features of Hadron Physics from Superconformal Algebra and Light-Front Holography

Dynamics + Spectroscopy!

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics $\{\psi,\psi^+\} = 1$ $B = \frac{1}{2}[\psi^+,\psi] = \frac{1}{2}\sigma_3$ $\psi = \frac{1}{2}(\sigma_1 - i\sigma_2), \quad \psi^+ = \frac{1}{2}(\sigma_1 + i\sigma_2)$ $Q = \psi^{+}[-\partial_{x} + \frac{f}{x}], \quad Q^{+} = \psi[\partial_{x} + \frac{f}{x}], \quad S = \psi^{+}x, \quad S^{+} = \psi x$ $\{Q, Q^+\} = 2H, \{S, S^+\} = 2K$ $\{Q, S^+\} = f - B + 2iD, \ \{Q^+, S\} = f - B - 2iD$ generates conformal algebra [H,D] = i H, [H, K] = 2 i D, [K, D] = - i K $Q \simeq \sqrt{H}, S \simeq \sqrt{K}$

Superconformal Quantum Mechanics

Baryon Equation $Q \simeq \sqrt{H}, S \simeq \sqrt{K}$

Consider
$$R_w = Q + wS;$$

w: dimensions of mass squared

$$G = \{R_w, R_w^+\} = 2H + 2w^2K + 2wfI - 2wB \qquad 2B = \sigma_3$$

Retains Conformal Invariance of Action

Fubini and Rabinovici

New Extended Hamíltonían G ís díagonal:

$$G_{11} = \left(-\partial_x^2 + w^2 x^2 + 2wf - w + \frac{4(f + \frac{1}{2})^2 - 1}{4x^2}\right)$$

$$G_{22} = \left(-\partial_x^2 + w^2 x^2 + 2wf + w + \frac{4(f - \frac{1}{2})^2 - 1}{4x^2}\right)$$

Identify $f - \frac{1}{2} = L_B$, $w = \kappa^2$
Firmulas of C : $M^2(n, I) = 4w^2(n + I - 1)$

Eigenvalue of G: $M^2(n, L) = 4\kappa^2(n + L_B + 1)$

LF Holography

Baryon Equation

Superconformal Quantum Mechanics

$$\begin{pmatrix} -\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(L_{B} + 1) + \frac{4L_{B}^{2} - 1}{4\zeta^{2}} \end{pmatrix} \psi_{J}^{+} = M^{2}\psi_{J}^{+} \\ \begin{pmatrix} -\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}L_{B} + \frac{4(L_{B} + 1)^{2} - 1}{4\zeta^{2}} \end{pmatrix} \psi_{J}^{-} = M^{2}\psi_{J}^{-} \\ M^{2}(n, L_{B}) = 4\kappa^{2}(n + L_{B} + 1) \qquad \text{S=1/2, P=+} \\ Meson Equation \qquad \lambda = \kappa^{2} \\ \begin{pmatrix} -\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(J - 1) + \frac{4L_{M}^{2} - 1}{4\zeta^{2}} \end{pmatrix} \phi_{J} = M^{2}\phi_{J} \\ M^{2}(n, L_{M}) = 4\kappa^{2}(n + L_{M}) \qquad \text{S=0, P=+} \\ M^{2}(n, L_{M}) = 4\kappa^{2}(n + L_{M}) \qquad \text{S=0, P=+} \\ \text{S=0, I=I Meson is superpartner of S=1/2, I=I Baryon} \end{cases}$$

Meson-Baryon Degeneracy for L_M=L_B+1

LF Holography

Superconformal Quantum Mechanics

• Nucleon LF modes

$$\psi_{+}(\zeta)_{n,L} = \kappa^{2+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{3/2+L} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{L+1} \left(\kappa^{2}\zeta^{2}\right)$$
$$\psi_{-}(\zeta)_{n,L} = \kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{5/2+L} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{L+2} \left(\kappa^{2}\zeta^{2}\right)$$

Normalization

$$\int d\zeta \,\psi_+^2(\zeta) = \int d\zeta \,\psi_-^2(\zeta) = 1$$

• Eigenvalues $\int_{0}^{\infty} d\zeta \int_{0}^{1} dx \psi_{+}^{2}(\zeta^{2}, x) = \int_{0}^{\infty} d\zeta \int_{0}^{1} dx \psi_{-}^{2}(\zeta^{2}, x) = \frac{1}{2}$ *Quark Chiral Symmetry of Eigenstate!*

Nucleon: Equal Probability for L=0, I $J^{z} = +1/2$: $\frac{1}{\sqrt{2}}[|S_{q}^{z}| = +1/2, L^{z} = 0 > + |S_{q}^{z}| = -1/2, L^{z} = +1 >]$

Nucleon spín carríed by quark orbítal angular momentum

Using SU(6) flavor symmetry and normalization to static quantities

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

Heavy-light and heavy-heavy hadronic sectors

• Extension to the heavy-light hadronic sector

[H. G. Dosch, GdT, S. J. Brodsky, PRD 92, 074010 (2015), PRD 95, 034016 (2017)]

• Extension to the double-heavy hadronic sector

[M. Nielsen and S. J. Brodsky, PRD, 114001 (2018)]

[M. Nielsen, S. J. Brodsky, GdT, H. G. Dosch, F. S. Navarra, L. Zou, PRD 98, 034002 (2018)]

• Extension to the isoscalar hadronic sector

[L. Zou, H. G. Dosch, GdT,S. J. Brodsky, arXiv:1901.11205 [hep-ph]]

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!

Superconformal Algebra 4-Plet

New Organization of the Hadron Spectrum

	Meson			Baryon			Tetraquark			
	q-cont	$J^{P(C)}$	Name	q-cont	J^p	Name	q-cont	$J^{P(C)}$	Name	
	$\bar{q}q$	0-+	$\pi(140)$	_	_		_		_	
	$\bar{q}q$	1+-	$b_1(1235)$	[ud]q	$(1/2)^+$	N(940)	$[ud][\overline{u}\overline{d}]$	0++	$f_0(980)$	
	$\bar{q}q$	2^{-+}	$\pi_2(1670)$	[ud]q	$(1/2)^{-}$	$N_{\frac{1}{2}}(1535)$	$[ud][\overline{u}d]$	1-+	$\pi_1(1400)$	
					$(3/2)^{-}$	$N_{\frac{3}{2}}(1520)$			$\pi_1(1600)$	
	āq	1	$\rho(770), \omega(780)$							
	$\bar{q}q$	2++	$a_2(1320), f_2(1270)$	[qq]q	$(3/2)^+$	$\Delta(1232)$	$[qq][\bar{u}\bar{d}]$	1++	$a_1(1260)$	
	$\bar{q}q$	3	$\rho_3(1690), \ \omega_3(1670)$	[qq]q	$(1/2)^{-}$	$\Delta_{\frac{1}{2}}(1620)$	$[qq][\bar{u}d]$	2	$\rho_2 (\sim 1700)?$	
					$(3/2)^{-}$	$\Delta_{a}^{-}(1700)$				
	$\bar{q}q$	4++	$a_4(2040), f_4(2050)$	[qq]q	$(7/2)^+$	$\Delta_{\frac{7}{8}^+}(1950)$	$[qq][\bar{u}\bar{d}]$	3++	$a_3 (\sim 2070)?$	
	\bar{qs}	0-(+)	K(495)			_				
	$\bar{q}s$	1+(-)	$\bar{K}_{1}(1270)$	[ud]s	$(1/2)^+$	Λ(1115)	$[ud][\bar{s}\bar{q}]$	0+(+)	$K_0^*(1430)$	
	$\bar{q}s$	$2^{-(+)}$	$K_2(1770)$	[ud]s	$(1/2)^{-}$	Λ(1405)	$[ud][\bar{s}\bar{q}]$	1-(+)	$K_1^* (\sim 1700)?$	
					$(3/2)^{-}$	$\Lambda(1520)$				
	$\bar{s}q$	0-(+)	K(495)	_	_					
	$\bar{s}q$	1+(-)	$K_1(1270)$	[sq]q	$(1/2)^+$	$\Sigma(1190)$	$[sq][\bar{s}\bar{q}]$	0++	$a_0(980)$	
			te: (000)						$f_0(980)$	
(są	1-(-)	<u>K*(890)</u>		(0.(0))		(1()	41(1)		
C	sq	2+(+)	$K_{2}^{*}(1430)$	[sq]q	$(3/2)^+$	Σ(1385) Σ(1650)	sq qq	1+(+)	$K_1(1400)$	
	sq -	3 (-)	$K_{3}(1780)$	[<i>sq</i>] <i>q</i>	$(3/2)^{-}$	Σ(1070) Σ(2020)	[<i>sq</i>][<i>qq</i>]	2 (-)	$K_2(\sim 1700)?$	
	sq -	4	R ₄ (2045)	[sq]q	$(1/2)^{+}$	2(2030)	[<i>sq</i>][<i>qq</i>]	3.(1)	$K_{3}(\sim 2070)?$	
	88	1+-	$\eta(550)$	[aa]a	(1.(9)+		[][==]	0++	£ (1970)	
	88	1.	$n_1(1170)$	[sq]s	$(1/2)^{-1}$	2(1320)	[sq][sq]	0	$J_0(1370)$ $q_{-}(1450)$	
	āe	2-+	m(1645)	[20]2	$(7)^{?}$	豆(1690)	[90][90]	1-+	$\Phi'(1750)?$	
		1	Φ(1020)	[04]0	(.)	=======================================	[94][94]	_	* (1150).	
	38	2++	$f'_{2}(1525)$	[sq]s	$(3/2)^+$	E*(1530)	[sq][sq]	1++	$f_1(1420)$	
	38	3	$\Phi_{a}(1850)$	[sq]s	$(3/2)^{-}$	三(1820)	$[sq][\bar{s}\bar{q}]$	2	$\Phi_2(\sim 1800)?$	
	ŝs	2++	f2(1950)	[88]8	(3/2)+	Ω(1672)	$[ss][\bar{s}\bar{q}]$	1+(+)	$K_1(\sim 1700)?$	
	M	Meson			Barvon			Tetraquark		
					• / ~					

M. Níelsen, sjb de Tèramond, Dosch, Lorce, sjb

New World of Tetraquarks

$$3_C \times 3_C = \overline{3}_C + 6_C$$

Bound!

Complete Regge spectrum in n, L

- Diquark Color-Confined Constituents: Color $\overline{3}_C$
- Diquark-Antidiquark bound states
- Confinement Force Similar to quark-antiquark $\overline{3}_C \times 3_C = 1_C$ mesons
- Isospin $I = 0, \pm 1, \pm 2$ Charge $Q = 0, \pm 1, \pm 2$

Use counting rules to identify composite structure

Lebed, sjb

Superpartners for states with one c quark

	Me	eson		Bary	yon	Tetraquark			
q-cont	$J^{P(C)}$	Name	$q ext{-cont}$	J^P	Name	q-cont	$J^{P(C)}$	Name	
$\bar{q}c$	0-	D(1870)							
$\bar{q}c$	1+	$D_1(2420)$	[ud]c	$(1/2)^+$	$\Lambda_c(2290)$	$[ud][\bar{c}\bar{q}]$	0^{+}	$\bar{D}_{0}^{*}(2400)$	
$\bar{q}c$	2^{-}	$D_J(2600)$	[ud]c	$(3/2)^{-}$	$\Lambda_c(2625)$	$[ud][\bar{c}\bar{q}]$	1-		
$\bar{c}q$	0-	$\bar{D}(1870)$							
$\bar{c}q$	1+	$O_1(2420)$	[cq]q	$(1/2)^+$	$\Sigma_{c}(2455)$	$[cq][\bar{u}\bar{d}]$	0^{+}	$D_0^*(2400)$	
$\bar{q}c$	1-	$D^{*}(2010)$			_ \				
$\bar{q}c$	2^{+}	$D_2^*(2460)$	(qq)c	$(3/2)^+$	$\Sigma_{c}^{*}(2520)$	$(qq)[\bar{c}\bar{q}]$	1+	D(2550)	
$\bar{q}c$	3^{-}	$D_3^*(2750)$	(qq)c	$(3/2)^{-}$	$\Sigma_{c}(2800)$	$(qq)[\bar{c}\bar{q}]$			
$\bar{s}c$	0-	$D_s(1968)$							
$\overline{s}c$	1+	$D_{s1}(2460)$	[qs]c	$(1/2)^+$	$\Xi_c(2470)$	$[qs][ar{c}ar{q}]$	0^{+}	$\bar{D}_{s0}^{*}(2317)$	
$\bar{s}c$	2^{-}	$Q_{s2}(\sim 2860)?$	[qs]c	$(3/2)^{-}$	$\Xi_c(2815)$	$[sq][\bar{c}\bar{q}]$	1-		
$\bar{s}c$	1-	$D_s^*(2110)$	$\backslash -$						
$\bar{s}c$	2^{+}	$D_{s2}^{*}(2573)$	(sq)c	$(3/2)^+$	$\Xi_{c}^{*}(2645)$	$(sq)[\bar{c}\bar{q}]$	1+	$D_{s1}(2536)$	
$\bar{c}s$	1+	$Q_{s1}(\sim 2700)?$	[cs]s	$(1/2)^+$	$\Omega_c(2695)$	$[cs][\bar{s}\bar{q}]$	0^{+}	??	
$\bar{s}c$	2^{+}	$D_{s2}^* (\sim 2750)?$	(ss)c	$(3/2)^+$	$\Omega_c(2770)$	$(ss)[\bar{c}\bar{s}]$	1+	??	
M. Níelsen, sjb				pr	edictions	beautiful agreement! 55			

Running Coupling from Modified AdS/QCD Deur, de Teramond, sjb

Consider five-dim gauge fields propagating in AdS₅ space in dilaton background $arphi(z) = \kappa^2 z^2$

$$e^{\phi(z)} = e^{+\kappa^2 z^2} \qquad S = -\frac{1}{4} \int d^4 x \, dz \, \sqrt{g} \, e^{\varphi(z)} \, \frac{1}{g_5^2} \, G^2$$

Flow equation

$$\frac{1}{g_5^2(z)} = e^{\varphi(z)} \frac{1}{g_5^2(0)} \quad \text{or} \quad g_5^2(z) = e^{-\kappa^2 z^2} g_5^2(0)$$

where the coupling $g_5(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_s(\zeta) = g_{YM}^2(\zeta)/4\pi$ is the five dim coupling up to a factor: $g_5(z) \to g_{YM}(\zeta)$
- $\bullet\,$ Coupling measured at momentum scale Q

$$\alpha_s^{AdS}(Q) \sim \int_0^\infty \zeta d\zeta J_0(\zeta Q) \,\alpha_s^{AdS}(\zeta)$$

Solution

$$\alpha_s^{AdS}(Q^2) = \alpha_s^{AdS}(0) e^{-Q^2/4\kappa^2}.$$

where the coupling α_s^{AdS} incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge
$$\alpha_{g1}(Q^2)$$
$$\int_0^1 dx [g_1^{ep}(x,Q^2) - g_1^{en}(x,Q^2)] \equiv \frac{g_a}{6} [1 - \frac{\alpha_{g1}(Q^2)}{\pi}]$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large Q²
- Computable at large Q² in any pQCD scheme
- Universal β_0 , β_1

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for Q < 1 GeV

$$e^{\varphi} = e^{+\kappa^2 z^2}$$

Deur, de Teramond, sjb

T. Gehrmann, N. H'afliger, P. F. Monni

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

Principle of Maximum Conformality (PMC)

Renormalization scale depends on the thrust

Not constant

S.-Q. Wang, L. Di Giustino, X.-G. Wu, SJB

Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time τ

Underlying Principles

- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS₅ = LF (3+1) $z \leftrightarrow \zeta$ where $\zeta^2 = b_{\perp}^2 x(1-x)$

- Introduce Mass Scale κ while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in AdS₅: $e^{+\kappa^2 z^2}$
- Unique color-confining LF Potential $~U(\zeta^2)=\kappa^4\zeta^2$
- Superconformal Algebra: Mass Degenerate 4-Plet:

Meson $q\bar{q} \leftrightarrow$ Baryon $q[qq] \leftrightarrow$ Tetraquark $[qq][\bar{q}\bar{q}]$

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-Fubini-Furlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

GHP-APS Denver Apri 10, 2019

Invariance Principles of Quantum Field Theory

- Polncarè Invariance: Physical predictions must be independent of the observer's Lorentz frame: Front Form
- Causality: Information within causal horizon: Front Form
- Gauge Invariance: Physical predictions of gauge theories must be independent of the choice of gauge
- Scheme-Independence: Physical predictions of renormalizable theories must be independent of the choice of the renormalization scheme — Principle of Maximum Conformality (PMC)
- Mass-Scale Invariance: Conformal Invariance of the Action (DAFF)

GHP-APS Denver Apri 10, 2019

Manifestation of QCD symmetries

QCD symmetries	LFHQ
Lagrangian QCD conformal invariant	Action conformal QM invariant under conf transf
	ightarrow LF potential is harmonic oscillator
$SU(3)_C$ local invariance $ ightarrow \overline{3} \sim 3 imes 3$	Connection between mesons, baryons and tetraquarks
	Emerging hadronic SUSY
	(Hadronic SUSY introduced by Miyazawa 1967)
$SU(3)_C$ and conformal invariant Lagrangian.	SUSY + Conformal = Superconformal
	Fixes uniquely the interaction and modification of AdS
$SU(2)_A$ spontaneously broken	Goldstone boson not required: zero mass bound state
$I \rightarrow I = 1$ pseudoscalar Goldstone boson \equiv pion	protected by superconformal algebra
$U(1)_A$ <u>not</u> spontaneosuly broken	Nonperturbative hard breaking encoded by additional
(no massless I = 0 particle)	term in LF Hamiltonian $\sim\lambda$ for isoscalar sector

Supersymmetric Features of Hadron Physics and other Novel **Properties of Quantum Chromodynamics from Light-Front** Holography and Superconformal Algebra

with Guy de Tèramond, Hans Günter Dosch, Marina Nielsen, F. Navarra, Liping Zou, S. Groote, S. Koshkarev, C. Lorcè, R. S. Sufian, A. Deur

8th Workshop of the APS Topical Group on Hadronic Physics **GHP-APS**

Denver Thursday, 11 April 2019