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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.

M2[GeV2]

E. Klempt and B. Ch. Metsch

Mesons and Baryons: Same Regge Slope M2 / J !
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Profound Questions for Hadron Physics

• Color Confinement 

• Origin of QCD Mass Scale 

• Spectroscopy:  Tetraquarks, Pentaquarks, Gluonium, 
Exotic States 

• Universal Regge Slopes: n, L, Mesons and Baryons 

• Massless Pion: Quark-Antiquark Bound State 

• Dynamics and Spectroscopy 

• QCD Coupling at all Scales 

• QCD Vacuum —Do Condensates Exist?



Need a First Approximation to QCD 

 Comparable in simplicity to 
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 

Origin of hadronic mass scale

AdS/QCD 
Light-Front Holography  
Superconformal Algebra

     No parameters except for quark masses 



Structure of Hadron Bound-State Equations in LFHQCD
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Symmetry for VM first noticed by E. Klempt

p
� = 0.523 ± 0.024 GeV

• Quadratic mass correction for light quark masses

�M
2[m1, · · · ,mn] =

�
2

F

dF

d�

with F [�] =
R 1
0 · · ·

R
dx1 · · · dxn e

� 1
�

✓Pn
i=1

m2
i

xi

◆

�(
Pn

i=1 xi � 1)

• How universal is the semiclassical approximation based on superconformal LFHQCD ?

Best fit for hadronic scale

p
� from different light hadron sectors including radial and orbital excitations

Bound States in QCD, St Goar, 9 April 2019

Page 11

κ = λ = 0.523 ± 0.024





Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb

κ = λ = 0.523 ± 0.024

Single Universal Mass Scale



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian
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LF Wavefunction: off-shell in invariant mass
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Invariant under boosts!  Independent of Pμ 

Dirac: Front Form
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picture

Drell &Yan, West 
Exact LF formula!

Front Form

Drell, sjb



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum
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i
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Sivers, T-odd from lensing

Light-Front Wavefunctions
underly hadronic observables

DGLAP, ERBL Evolution
Factorization Theorems

Weak transition  
form factors



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�
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�
x

]i + Hint
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

H
int
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,~k?i,�i)|n;xi,~k?i,�i >



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  
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and retarded interactions
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
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d⇣2
+

1� 4L2
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+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Preserves Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)
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Confinement scale:   

Light-Front Schrödinger Equation
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Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2

 ' 0.5 GeV



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Maldacena
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 Stan Brodsky
Supersymmetric Features of Hadron Physics 

from Superconformal Algebra and Light-Front Holography
GHP-APS

Denver Apri 10, 2019

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton
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Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary
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Baryon Equation

Meson Equation
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Superconformal Algebra
2X2 Hadronic Multiplets
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 B�, LB + 1
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'$e eu u
�T , LB
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�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C
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Supersymmetry in QCD

• A hidden symmetry of Color SU(3)C in hadron 
physics

• QCD: No squarks or gluinos!

• Emerges from Light-Front Holography and 
Super-Conformal Algebra

• Color Confinement

• Massless Pion in Chiral Limit



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)
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S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!
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Figure 1: Comparison of the light-front holographic prediction [1] M
2(n, L, S) =

4�(n+ L+ S/2) for the orbital L and radial n excitations of the meson spectrum with
experiment. See Ref. [2]

1 Introduction

A remarkable empirical feature of the hadronic spectrum is the near equality of the

slopes of meson and baryon Regge trajectories. The square of the masses of hadrons

composed of light quarks is linearly proportional not only to L, the orbital angular

momentum, but also to the principal quantum number n, the number of radial nodes in

the hadronic wavefunction as seen in Fig. 1. The Regge slopes in n and L are equal, as in

the meson formula M
2
M
(n, L, S) = 4�(n+L+S/2 from light front holographic QCD [1],

but even more surprising, they are observed to be equal for both the meson and baryon

trajectories, as shown in Fig. 2. The mean value for all of the slopes is  =
p
� = 0.523

GeV. See Fig. 3.

4

M2(n,L, S) = 42(n + L + S/2) Equal Slope in n and L



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2 = h |
X

a

m2
a/xa| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�m2
q

x +
m2

q
1�x

�
e�

1
2� ⇣2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S = M2

K± + 4�
✓

n +
J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

mu = md = 46 MeV, ms = 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism

Effective mass from m(p2) Roberts, et al.



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



Prediction from AdS/QCD: Meson LFWF
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A.P.  Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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Light-Front Holography:  First Approximation to QCD

• Color Confinement, Analytic form of confinement potential 

• Retains underlying conformal properties of QCD despite mass scale            
(DeAlfaro-Fubini-Furlan Principle) 

• Massless quark-antiquark pion bound state in chiral limit, GMOR 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincarè Invariant 

•Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

•Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry 

•Light-Front Wavefunctions 

•Form Factors, Structure Functions, Hadronic Observables 

•OPE: Constituent Counting Rules 

•Hadronization at the Amplitude Level:  Many Phenomenological Tests 



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d

2

dx2
+

g

x2
+

4uw � v
2

4
x

2
�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

(dAFF)



fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes

Retains conformal invariance of action 
despite mass scale! 
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Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent

•QCD scale appears - unique LF potential

•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

•Zero-mass pion for zero mass quarks!

•Regge slope same for n and L  -- not usual HO

•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

•Phenomenology: LFWFs, Form factors, electroproduction

•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q
+} = 2H, {S, S

+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  +[�@x +
f

x
], Q+ =  [@x +

f

x
], S =  +x, S+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS; w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @2

x + w2x2 + 2wf � w +
4(f + 1

2 )2 � 1
4x2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R
+
w} = 2H + 2w2

K + 2wfI � 2wB

G22 =
�
� @2

x + w2x2 + 2wf + w +
4(f � 1

2 )2 � 1
4x2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2(n,L) = 42(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K

� = 2



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal  
Quantum Mechanics 

Same   !
S=0, P=+

� = 2
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon spin carried by quark orbital angular momentum 

Nucleon: Equal Probability for L=0,1

Jz = + 1/2 :
1

2
[ |Sz

q = + 1/2, Lz = 0 > + |Sz
q = − 1/2, Lz = + 1 > ]

R1
0 d⇣

R 1
0 dx 2

+(⇣
2, x) =

R1
0 d⇣

R 1
0 dx 2

�(⇣
2, x) = 1

2

Baryon LFWFsLF Holography
Superconformal  

Quantum Mechanics 



Using SU(6) flavor symmetry and normalization to static quantities
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Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



Structure of Hadron Bound-State Equations in LFHQCD

4 Heavy-light and heavy-heavy hadronic sectors

• Extension to the heavy-light hadronic sector

[H. G. Dosch, GdT, S. J. Brodsky, PRD 92, 074010 (2015), PRD 95, 034016 (2017)]

• Extension to the double-heavy hadronic sector

[M. Nielsen and S. J. Brodsky, PRD, 114001 (2018)]

[M. Nielsen, S. J. Brodsky, GdT, H. G. Dosch, F. S. Navarra, L. Zou, PRD 98, 034002 (2018)]

• Extension to the isoscalar hadronic sector

[L. Zou, H. G. Dosch, GdT,S. J. Brodsky, arXiv:1901.11205 [hep-ph]]

Bound States in QCD, St Goar, 9 April 2019
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C



]

uu

ū

uu

uu
L = 0

L = 1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! (qq)
3̄C ! 3̄C

( )

( ) ( )
[

JPC = 2++

JP =
3

2

+ JPC = 1++

L = 0

�+(1232)

L = 1, S = 1

u u

u ū

f2(1270)

S = 1

S = 0

Superconformal Algebra 4-Plet 

Vector ()+ Scalar [] Diquarks

Tetraquark

Meson Baryon

d̄

a1(1260)



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Meson Baryon        Tetraquark



New World of Tetraquarks

• Diquark Color-Confined Constituents: Color

• Diquark-Antidiquark bound states

• Confinement Force Similar to quark-antiquark 
mesons

• Isospin                            Charge 

3C ⇥ 3C = 3̄C + 6C

3̄C

3̄C ⇥ 3C = 1C

Q = 0,±1,±2I = 0,±1,±2
1/10/2015 NeoFronteras » Confirman Z(4430) - Portada -

http://neofronteras.com/?p=4405 2/11

Los quarks tienen además de carga eléctrica una carga distinta que se ha llamado carga de color y que
puede ser roja, verde o azul (es una analogía, obviamente no tienen color real), con sus correspondientes
anticolores. Combinando quarks se consiguen partículas con carga de color neutra. Los leptones son
partículas de spin semientero, en concreto son el electrón, el muón y el tau con sus correspondientes
neutrinos asociados.
Además de todo ello, hay partículas de spin entero (bosones) que son los portadores de las fuerzas. Los
quarks y leptones interaccionan intercambiando bosones virtuales de fuerza, partículas que no tienen
consistencia real. Un electrón se ve atraído por otro porque se intercambian fotones virtuales (los bosones
de la fuerza electromagnética).

Esquema del modelo estándar. Foto: Fermilab.

Para crear un protón se necesitan tres quaks, dos quark up y uno down que se mantienen unidos gracias a que intercambian unos bosones
virtuales denominados gluones que son los portadores de la fuerza nuclear fuerte.
Los conjuntos de quarks, como el protón, se denominan hadrones. Los hadrones de dos quarks son los mesones (color y anticolor) y los de
tres (tres colores que dan neutro) se llaman bariones. Así que Z(4430) es un hadrón.
La cromodinámica cuántica predice la existencia de hadrones exóticos, además de los bariones y mesones conocidos, esta teoría de campos
predice la existencia de tetraquarks (dos colores y sus correspondientes anticolores), pentaquarks (tres colores y un color y anticolor),

uud̄d̄ uus̄d̄ uus̄s̄

Q= +2
Q= - 1

Bound!

de Tèramond, Dosch, Lorce, sjb

Complete Regge 
spectrum in n, L



e+

e�
��

��

T+

�(e+e� ! MT ) / 1
sN�1

Use counting rules to identify composite structure

N = 6

Lebed, sjb



]

R†
� q ! [q̄q̄]

3C ! 3C

[

S = 0

Double-Strange Baryon

JP =
1

2

+

JPC = 0++

q̄

R†
� q̄ ! [qq]

3̄C ! 3̄C

S = 0

]

] ][[

[
LB = 0

LB = 1

LM = 1, S = 0

LT = 0

Scalar[] Diquarkss

s

s

s

s

s̄

⌘0

s

s̄

q q

q

h1(1170) ⌅(1320)

f0(1370)



a


a

Superpartners for states with one c quark

predictions             beautiful agreement!M. Nielsen, sjb  55



]

R†
� q ! [q̄q̄]

3C ! 3C

[

S = 0

c̄ c

c c

Double-Charm Baryon (SELEX)

⌅+
CC(3520)

JP =
1

2

+

JPC = 0++

hc(3525)

c

⌘0c

c

c c̄ q̄

R†
� q̄ ! [qq]

3̄C ! 3̄C

S = 0

Predict Tetraquark Tcc̄qq̄

MT ⇠ 3520 MeV]

] ][[

[

dd

d
LB = 0

LB = 1

LM = 1, S = 0

LT = 0

Scalar Diquarks

JPC = 1+�



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS

Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD 
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjbm⇢ =
p

2
mp = 2

� ⌘ 2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV
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FIG. 2. The thrust differential distributions using the con-
ventional (Conv.) and PMC scale settings. The dotdashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO, respectively. The solid line is the PMC re-
sult. The bands for the theoretical predictions are obtained
by varying µr ∈ [MZ/2, 2MZ ]. The PMC prediction elim-
inates the scale µr uncertainty. The experimental data are
taken from the ALEPH [2], DELPH [3], OPAL [4], L3 [5] and
SLD [31] experiments.

• By fitting the conventional predictions to the ex-
perimental data, the extracted coupling constants
are deviated from the world average, and are also
plagued by significant µr uncertainty [32].

Due to the kinematical constraints, the domain of the
thrust distribution at LO and of the PMC scale is re-
stricted to the range of 0 ≤ (1 − T ) ≤ 1/3. After ap-
plying the PMC, in addition to the small values and the
monotonically increasing behavior of the PMC scale, the
magnitude of the conformal coefficients are small and its
behavior is very different from that of the conventional
scale setting. The resulting PMC predictions are in a-
greement with the experimental data with high precision
over the (1 − T ) region, while they show a slight de-
viation near the two-jet and multi-jet regions. Based on
the conventional scale setting, Ref.[8] has also found that
outside of the region of 0.04 ≤ (1−T ) ≤ 0.33, the pQCD
predictions are unreliable. Thus, in order to improve the
predictions near the two-jet and multi-jet regions, the
higher pQCD calculations may be needed for the PM-
C analysis. In addition, as we have already mentioned
above, the non-perturbative effects should be taken into
account in the two-jet region.
In addition to the differential distribution, the mean

value of event shapes have also been extensively mea-
sured and studied. Since the calculation of the mean
value involves an integration over the full phase space, it
provides an important platform to complement the differ-
ential distribution that afflict the event shapes especially
in the two-jet region and to determinate the coupling
constant.
The mean value ⟨τ⟩ (τ = (1− T )) of thrust variable is

defined by

⟨τ⟩ =
∫ τ0

0

τ

σh

dσ

dτ
dτ, (8)

where τ0 is the kinematical upper limit for the thrust
variable.

The electron-positron colliders have collected large
numbers of experimental data for the thrust mean value
over a wide range of center-of-mass energy (14 GeV ≤

√
s

≤ 206 GeV) [2–5, 33]. However, the pQCD prediction-
s based on the conventional scale setting substantially
deviate from the experimental data. Currently, the most
common way is to split the mean value into the perturba-
tive and non-perturbative contributions, which has been
studied extensively in the literature. However, some ar-
tificial parameters and theoretical models are introduced
in order to match the theoretical predictions with the ex-
perimental data. It is noted that the analysis of Ref.[2]
obtains a large value of αs and suggests that a better de-
scription for the mean value can be in general obtained
by setting the renormalization scale µr ≪

√
s.

The pQCD calculations for the mean value variables
have been given in Refs. [34, 35]. After applying the
PMC scale setting to the thrust mean value ⟨1− T ⟩, we
obtain the optimal PMC scale,

µpmc
r |⟨1−T ⟩ = 0.0695

√
s, (9)

which monotonously increases with
√
s, and is 0.0695

times the conventional choice µr =
√
s and thus

µpmc
r |⟨1−T ⟩ ≪

√
s. We notice that by taking

√
s =

MZ = 91.1876 GeV, the PMC scale µpmc
r |⟨1−T ⟩ = 6.3

GeV. This is reasonable, since we have shown in Fig.(1)
that the PMC scales of thrust differential distribution are
also very small in wide region of (1 − T ). By excluding
some results in multi-jet regions, the average of the PM-
C scale ⟨µpmc

r ⟩ of thrust differential distribution is also
close to the µpmc

r |⟨1−T ⟩. This shows that the PMC scale
setting is self-consistent.

We present the thrust mean value ⟨1 − T ⟩ versus the
center-of-mass energy

√
s using the conventional and

PMC scale settings in Fig.(3). In the case of the con-
ventional scale setting, the perturbative series shows a
slow convergence and the estimation of the magnitude
of unknown higher-order QCD corrections by varying
µr ∈ [

√
s/2, 2

√
s] is unreliable. The predictions are

plagued by scale µr uncertainty, and substantial devi-
ated from the experimental data even up to NNLO [34].
These cases are similar to those of the thrust differential
distributions based on the conventional scale setting.

Since the optimal PMC scales are small, and the mag-
nitude of conformal coefficients are very different from
those of the conventional scale setting, the resulting pre-
dictions for thrust mean value increase especially in the
small center-of-mass energy region. Fig.(3) shows that
the scale-independent PMC prediction is in excellent a-
greement with the experimental data in the wide center-

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

T. Gehrmann, N. H äfliger, P. F. Monni

Guessed scale

PMC scale

Principle of Maximum Conformality (PMC)
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Thrust Distribution in Electron-Positron Annihilation using the Principle of
Maximum Conformality

Sheng-Quan Wang1,2,∗ Stanley J. Brodsky2,† Xing-Gang Wu3,‡ and Leonardo Di Giustino2,4§
1Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China

2SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
3Department of Physics, Chongqing University, Chongqing 401331, P.R. China and

4Department of Science and High Technology, University of Insubria, via valleggio 11, I-22100, Como, Italy
(Dated: February 6, 2019)

We present a comprehensive and self-consistent analysis for the thrust distribution by using the
Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q

2) from the measurement of the jet distributions in electron-positron
annihilation at a single given value of the center-of-mass energy

√
s.

PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.-a

The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
n⃗

∑
i
|p⃗i · n⃗|

∑
i
|p⃗i|

, (1)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of

Renormalization scale depends on the thrust
Not constant

e+e− → Z → qq̄g

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

T. Gehrmann, N. H äfliger, P. F. Monni
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 Stan Brodsky
Supersymmetric Features of Hadron Physics 

from Superconformal Algebra and Light-Front Holography
GHP-APS

Denver Apri 10, 2019

Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ 

• Causality: Information within causal horizon:  Light-Front 

• Light-Front Holography: AdS5 = LF (3+1) 

• Introduce Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF) 

• Unique Dilaton in AdS5:   

• Unique color-confining LF Potential 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



 Stan Brodsky
Supersymmetric Features of Hadron Physics 

from Superconformal Algebra and Light-Front Holography
GHP-APS

Denver Apri 10, 2019

Light-Front Holography:  First Approximation to QCD

• Color Confinement, Analytic form of confinement potential 

• Retains underlying conformal properties of QCD despite mass scale                          
(DeAlfaro-Fubini-Furlan Principle) 

• Massless quark-antiquark pion bound state in chiral limit, GMOR 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincarè Invariant 

• Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

• Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions, Hadronic Observables 

• OPE: Constituent Counting Rules 

• Hadronization at the Amplitude Level:  Many Phenomenological Tests 

• Systematically improvable:  Basis LF Quantization (BLFQ)
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 Stan Brodsky
Supersymmetric Features of Hadron Physics 

from Superconformal Algebra and Light-Front Holography
GHP-APS

Denver Apri 10, 2019

Invariance Principles of Quantum Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme —               
Principle of Maximum Conformality (PMC) 

• Mass-Scale Invariance:                                     
Conformal Invariance of the Action (DAFF) 

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


Structure of Hadron Bound-State Equations in LFHQCD

5 Manifestation of QCD symmetries

(In progress)

QCD symmetries LFHQ

Lagrangian QCD conformal invariant Action conformal QM invariant under conf transf

! LF potential is harmonic oscillator

SU(3)C local invariance ! 3 ⇠ 3 ⇥ 3 Connection between mesons, baryons and tetraquarks

Emerging hadronic SUSY

(Hadronic SUSY introduced by Miyazawa 1967)

SU(3)C and conformal invariant Lagrangian. SUSY + Conformal = Superconformal

Fixes uniquely the interaction and modification of AdS

SU(2)A spontaneously broken Goldstone boson not required: zero mass bound state

! I = 1 pseudoscalar Goldstone boson ⌘ pion protected by superconformal algebra

U(1)A not spontaneosuly broken Nonperturbative hard breaking encoded by additional

(no massless I = 0 particle) term in LF Hamiltonian ⇠ � for isoscalar sector

Bound States in QCD, St Goar, 9 April 2019
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c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0
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