Quarkonium production and polarization

Vincent Cheung

Nuclear Physics Group, Physics Department, University of California, Davis

Apr 12, 2019

Vincent Cheung (UC Davis)

Overview

Introduction

- Quarkonium Families
- Production and Detection
- Polarization

2 Production Models

- 3 Yields and Distributions
- Progress of Polarization Predictions

Summary and Future

Quarkonium Families

Quarkonia: bound states of $c\overline{c}$ or $b\overline{b}$

- combination of two spin 1/2 particles and orbital angular momentum \rightarrow different spin states ${}^{2S+1}L_J$
- all color singlets ${}^{2S+1}L_{J}{}^{[1]}$
- produced in *hh*, γp , $\gamma \gamma$, and e^+e^-
- states below the $H\overline{H}$ (H = D, B) threshold decay electromagnetically into $\ell^+\ell^-$

Some Production Diagrams in Different Systems

- S states ($J^{PC} = 1^{--}$) decay to $\ell^+\ell^-$, so they can be observed as peaks in dimuon mass spectra
- χ(nP) states (J^{PC} = J⁺⁺) can be reconstructed by matching an
 S state with a low momentum photon
- η_c and η_b states $(J^{PC}=0^{-+})$ decay hadronically

Polarization

- The tendency for quarkonium states of spin J to be in a particular $|J,J_z\rangle$ state is known as polarization
- For S state (J = 1) quarkonium, if $J_z = 0$, then it is longitudinally polarized
- If $J_z = \pm 1$, then it is transversely polarized
- It is typical to represent the polarization in terms of the polarization parameter, $\lambda_{\vartheta},$ which ranges from -1 to +1
- For the S states, $\lambda_{\vartheta} = -1$ refers to pure longitudinal production while $\lambda_{\vartheta} = +1$ refers to pure transverse production

 $J^{P} = 1^{-} (S \text{ states})^{[1]}$ $\lambda_{\vartheta} = \frac{\sigma^{J_{z}=+1} + \sigma^{J_{z}=-1} - 2\sigma^{J_{z}=0}}{\sigma^{J_{z}=+1} + \sigma^{J_{z}=-1} + 2\sigma^{J_{z}=+0}}$

¹P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, Eur. Phys. J. C 69, 657 (2010).

Polarization

• For the χ_1 (J = 1) and χ_2 (J = 2) states, the polarization parameter is defined as the polarization parameter of the product J/ψ or $\Upsilon(nS)$ if production comes purely from χ state feed down

•
$$\chi_c \rightarrow J/\psi + \gamma$$
, $\chi_b \rightarrow \Upsilon(nS) + \gamma$

$J^{P} = 1^{+} (\chi_{1} P \text{ states})^{[2]}$

$$\lambda_{\vartheta} = \frac{2\sigma^{J_z=0} - \sigma^{J_z=+1} - \sigma^{J_z=-1}}{2\sigma^{J_z=0} + 3\sigma^{J_z=+1} + 3\sigma^{J_z=-1}}$$

$$J^{P} = 2^{+} (\chi_{2} \text{ P states})^{[2]}$$

$$\lambda_{\vartheta} = \frac{-6\sigma^{J_z=0} - 3\sigma^{J_z=+1} + 6\sigma^{J_z=+2} - 3\sigma^{J_z=-1} + 6\sigma^{J_z=-2}}{10\sigma^{J_z=0} + 9\sigma^{J_z=+1} + 6\sigma^{J_z=+2} + 9\sigma^{J_z=-1} + 6\sigma^{J_z=-2}}$$

²P. Faccioli *et al.*, Phys. Lett. B **773**, 476 (2017).

Vincent Cheung (UC Davis)

Polarization Measurement

- There are three commonly used choices for the z-axis, namely z_{HX} (helicity), z_{CS} (Collins-Soper), and z_{GJ} (Gottfried-Jackson)
- θ is defined as the angle between the *z*-axis and the direction of travel for the ℓ^+ in the quarkonium rest frame

Vincent Cheung (UC Davis)

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos(2\phi) + \lambda_{\theta\phi} \sin(2\theta) \cos \phi$$

- \bullet Polarization parameters can be obtained by fitting the angular spectra as a function of θ and ϕ
- One can write $\phi_{\theta} = \phi \frac{\pi}{2} \mp \frac{\pi}{4}$ for $\cos \theta \leq 0$, then ^[3]

•
$$\frac{d\sigma}{d\phi_{ heta}} \propto 1 + \frac{\sqrt{2}\lambda_{ heta\phi}}{3+\lambda_{ heta}}\cos\phi_{ heta}$$

³I. Abt et al. (HERA-B Collaboration), Eur. Phys. J. C 60, 517 (2009).

Vincent Cheung (UC Davis)

Importance of Polarization

- Polarization predictions are strong tests of production models
- Detector acceptance depends on polarization hypothesis
- Understanding polarization helps narrow systematic uncertainties

Vincent Cheung (UC Davis)

Still unsettled

- $\bullet~{\rm J}/\psi$ and Υ are discovered in 1974 and 1977 respectively
- The quarkonium production mechanism has not been solved
- Current models cannot describe yield and polarization simultaneously

Color Singlet Model (CSM) [Berger, Jones 81; Baier, Rückl 81]

• constrains the production of $c\bar{c}$ to the color singlet state only

• calculated up to $\mathcal{O}(\alpha_s^4)$

Vincent Cheung (UC Davis)

Quarkonium Production Models

Non Relativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95]

• an Effective Field Theory where production is described as an expansion in powers of α_s and the relative velocity of the quarks ,v/c

•
$$|\psi_{Q}
angle = \mathcal{O}(1)|^{3}S_{1}^{[1]}
angle + \mathcal{O}(v)|^{3}P_{J}^{[8]}g
angle + \mathcal{O}(v^{2})|^{3}S_{1}^{[8]}gg
angle + \mathcal{O}(v^{2})|^{1}S_{0}^{[8]}g
angle$$

- At each order, the production is further factorized into perturbative Short Distance Coefficients and non-perturbative Long Distance Matrix Elements (LDMEs); e.g. for J/ψ , $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \langle \mathcal{O}^{J/\psi}[n] \rangle$
- σ_{cc[n]} are cross sections in a particular color and spin state n calcuated by perturbative QCD
- LDMEs are conjectured to be universal and the mixing of LDMEs are determined by fitting to data

Quarkonium Production Models

Color Evaporation Model (CEM) [Fritzsch 77; Halzen 77; Glück, Owens, Reya 78; Gavai *et al.* 95; Schuler, Vogt 95]

Leading order cross section:

$$\sigma = F_{\mathcal{Q}} \sum_{i,j} \int_{4m_Q^2}^{4m_H^2} d\hat{s} \int dx_1 dx_2 f_{i/p}(x_1,\mu^2) f_{j/p}(x_2,\mu^2) \hat{\sigma}_{ij}(\hat{s}) \delta(\hat{s}-x_1x_2s) ,$$

 F_Q is a universal factor for the quarkonium state (Q) and is independent of the projectile, target, and energy.

- all Quarkonium states are treated like QQ (Q = c, b) below HH
 (H = D, B) threshold
- all diagrams for $Q\bar{Q}$ production included, independent of color
- fewer parameters than NRQCD (one F_Q for each Quarkonium state)
- F_Q is fixed by comparison of NLO calculation of σ_Q^{CEM} to \sqrt{s} for J/ψ and Υ , $\sigma(x_F > 0)$ and $Bd\sigma/dy|_{y=0}$ for J/ψ , $Bd\sigma/dy|_{y=0}$ for Υ

$$\frac{d\sigma_{\psi}(P)}{dp_T} = F_{\psi} \int_{\underline{M}_{\psi}}^{2M_D} dM \frac{M}{M_{\psi}} \frac{d\sigma_{c\bar{c}}(M, P')}{dM dp'_T} \mathbf{p}_{T}^{-(M/M_{\psi})p_T}$$

 M_ψ is the mass of the charmonium state, ψ

- first new advance in the basic CEM model since 1990s
- able to describe relative production of J/ψ and ψ (2S), where the ratio is flat in the traditional CEM
- distinction between the momentum of the $c\bar{c}$ pair and that of charmonium so that the p_T spectra will be softer and thus may explain the high p_T data better
- \bullet employed to calculate production and polarization of all S states, and relative production of χ states

Results in the CSM

- Leading order calculations at O(α³_s) underestimate the Tevatron p_T distributions
- Gluon fragmentation to J/ψ is required to increase cross section to match data ^[6,7] (effectively α_s^4)
- only works with the J/ψ (sometimes)
- ⁶M. Cacciari and M. Greco, Phys. Rev. Lett. **73**, 1586 (1994).
- ⁷E. Braaten *et al.*, Phys. Lett. B **333**, 548 (1994).

Vincent Cheung (UC Davis)

Disagreemnt with other data in the CSM

 $\psi(2S)$ at CDFX (PLB **333**, 548 (1994).)

Υ(1S) at CDF**X** (PRL 88, 161802 (2002).)

 J/ψ at LEP2**X** (PLB **565**, 76 (2003).)

 J/ψ at ZEUS (EPJC **27**, 173 (2003).)

Vincent Cheung (UC Davis)

Results in NRQCD - A global fit of LDMEs^[8]

⁸M. Butenschoen and B. A. Kniehl, Nucl. Phys. Proc. Suppl. **222-224**, 151 (2012). ⁹L. Chang, Y. X. Liu and C. D. Roberts, Phys. Rev. Lett. **106**, 072001 (2011).

Vincent Cheung (UC Davis)

APS GHP Workshop 2019

Apr 12, 2019 17 / 28

Relative production in NRQCD

- ψ(2S) to J/ψ ratio agrees with data at most p_T ^[10]
- relative production of χ_c and χ_b are dominated by CSM contribution ^[11]

¹⁰S. P. Baranov and A. V. Lipatov, Phys. Rev. D **96**, 034019 (2017).
 ¹¹A. K. Likhoded *et al.*, Phys. Rev. D **90**, 074021 (2014).

Vincent Cheung (UC Davis)

η_c production in NRQCD

M. Butenschoen, Z-G He, and B. A. Kniehl, Phys. Rev. Lett. 114, 092004 (2015).

- all results so far overpredict LHCb η_c yields
- results can be described by CSM alone
- PRL 114, 092005 (2015) and PRL 114, 092006 (2015) describe the η_c results but not the J/ψ polarization

Vincent Cheung (UC Davis)

Results in the CEM^[12]

- one fitting factor for each quarkonium state
- ullet great consistency with experimental results over large range of \sqrt{s}

¹²R. E. Nelson, R. Vogt and A. D. Frawley, Phys. Rev. C 87, 014908 (2013).

Vincent Cheung (UC Davis)

Results in the CEM^[12,13]

overall less rigorous, but accurate predictions

• no advances in the basic model since 1990s

- ¹²R. E. Nelson, R. Vogt and A. D. Frawley, Phys. Rev. C 87, 014908 (2013).
- ¹³G. A. Schuler and R. Vogt, Phys. Lett. B **387**, 181 (1996).

Vincent Cheung (UC Davis)

APS GHP Workshop 2019

Apr 12, 2019 21 / 28

Results in the ICEM

Apr 12, 2019 22 / 28

Relative production in the ICEM^[14,15]

¹⁴Y. Q. Ma and R. Vogt, Phys. Rev. D **94**, 114029 (2016).
 ¹⁵V. Cheung and R. Vogt, Phys. Rev. D **98**, 114029 (2018) and **99**, 034007 (2019).

Vincent Cheung (UC Davis)

APS GHP Workshop 2019

Apr 12, 2019 23 / 28

J/ψ polarization problem in NRQCD^[16]

¹⁶N. Brambilla et al., Eur. Phys. J. C **74**, 2981 (2014)

Vincent Cheung (UC Davis)

$\Upsilon(nS)$ Polarization in NRQCD

B. Gong, L. P. Wan, J. X. Wang and H. F. Zhang, Phys. Rev. Lett. 112, 032001 (2014).

Update: Y. Feng, B. Gong, L. P. Wan, and J. X. Wang, Chin. Phys. C39, 123102 (2015).

- polarization of $\Upsilon(n\mathsf{S})$ is better described than for J/ψ
- polarization prediction in NRQCD is improved by including the feed down decays from χ_b states (bottom row)

Vincent Cheung (UC Davis)

Polarization in the k_T -factorized ICEM^[15]

Feed-down production:

Polarization of prompt J/ψ :

$$R_{J/\psi} = \sum_{\mathcal{Q},J_z} c_{\mathcal{Q}} S_{\mathcal{Q}}^{J_z} R_{\mathcal{Q}}^{J_z} \qquad \qquad \lambda_{artheta}^{J/\psi} = rac{1 - 3R_{J/\psi}^{J_z=0}}{1 + R_{J/\psi}^{J_z=0}}$$

Polarization is independent of F_Q and scales, mass is the only uncertainty

- charmonium is slightly longitudinally polarized in the CS frame
- bottomonium is nearly unpolarized in all frames

¹⁵V. Cheung and R. Vogt, Phys. Rev. D **98**, 114029 (2018) and **99**, 034007 (2019).

Vincent Cheung (UC Davis)

APS GHP Workshop 2019

Apr 12, 2019 26 / 28

Δ

Model Properties	NRQCD	CEM	ICEM
hadronization model	in terms of LDMEs	in terms of F_Q	
<i>n</i> in $\mathcal{O}(\alpha_s^n)$	4	3	3 (production)
			2 (polarization)
collision systems	all	h+h only so far	
production uncertainty	LDMEs	m_Q, μ_R, μ_F	
polarization	J/ψ Χ Υ √	not calculated	<i>J/ψ √</i> Υ √
polarization uncertainty	feed down contribution	N/A	m _Q

NRQCD

- Are the LDMEs universal?
- Can NRQCD describe η_c and J/ψ without breaking J/ψ polarization and results from other experiments?

ICEM

- Consider more collision systems
- NLO in collinear factorization