Extraction of the Pion Electromagnetic Form Factor

Australian Government Australian Research Council

Anthony W. Thomas

GHP Denver : 10th April 2019

Outline

- I. Significance of the pion form factor
- **II. Traditional approach**
- III. Improvement
- IV. Outlook

Collaborators: Robert Perry and Ayse Kizilersu

I. Importance of the pion in QCD

Pion is a pseudo-Goldstone boson in QCD

- Mass vanishes in limit of zero quark mass
- $m_{\pi} \sim m_{q}^{1/2}$: and the pion is by far the lightest hadron
- The electromagnetic form factor is a fundamental property, much studied in QCD
- Brodsky and LePage: large Q² limit

$$Q^2 F_\pi(Q^2) \rightarrow 16\pi f_\pi^2 \alpha_s(Q^2)$$

Extensive studies in SDE, NJL etc. (Cloët, Roberts....)

Recent study of charge symmetry violation

Charge symmetry breaking effects in pion and kaon structure

Parada T. P. Hutauruk,¹ Wolfgang Bentz,^{2,3} Ian C. Cloët,⁴ and Anthony W. Thomas⁵

PHYSICAL REVIEW C 97, 055210 (2018)

and in the Kaon form factor

Comparison of data with predictions

But: what are the "experimental" numbers?

Chen et al., Phys. Rev. D98 (2018) 091505

II. Current approach to data analysis

Direct measurement limited to very low Q²

At low energy, scatter pion beam from electrons in liquid hydrogen target.

Measure recoiling pion and electron.

Electro-production at higher-Q²

Also have interference from s- and u- channel terms.

Proportional to Nucleon Form Factors

- Theoretically?
- Empirically?

e

n

 F_{π}

Jefferson Lab data from F_{π} Collaboration

PHYSICAL REVIEW C 78, 045202 (2008)

Charged pion form factor between $Q^2 = 0.60$ and 2.45 GeV². I. Measurements of the cross section for the ¹H(e, e' π^+)n reaction

PHYSICAL REVIEW C 78, 045203 (2008)

Charged pion form factor between $Q^2 = 0.60$ and 2.45 GeV². II. Determination of, and results for, the pion form factor

Theoretical Framework for Analysis

Cross section may be decomposed into 4 structure functions.

$$(2\pi)\frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(\epsilon+1)}\frac{d\sigma_{LT}}{dt}\cos\phi + \epsilon \frac{d\sigma_{TT}}{dt}\cos 2\phi$$

 ϵ is a measure of the virtual photon polarization

Important, as is known that Longitudinal cross section dominated by *t*-channel pion exchange.

A good reconstruction of this structure function gives us a good change of extracting the pion form factor.

Modern extractions of the form factor use the VGL Model

Vanderhaeghen, Guidal, Laget (VGL) Model

Calculate Born diagrams:

• Sum needed to ensure gauge invariance

factors would destroy gauge invariance

- Reggeize pion exchange: $i\mathcal{M}_{R}^{\mu} = S_{F}^{\pi-1}S_{\pi}^{R}(t) \times [i\mathcal{M}_{BTM}^{\mu}]$
- Multiply by ONE overall form factor different form

COEPPP Ac Cantor of Excellence for

VGL Model (cont.)

• Final amplitude with which experimental data is fit:

$$i\mathcal{M}_{\text{VGL}}^{\mu} = F_{\pi}(Q^2) \times [i\mathcal{M}_{\text{R}}^{\mu}]$$
$$= F_{\pi}(Q^2) \times S_F^{\pi-1}S_{\pi}^{\text{R}}(t) \times [i\mathcal{M}_{\text{BTM}}^{\mu}]$$

• This is, of course, fine at the pion pole (t = + m_{π}^2) but data lies well away – typically t < -2 m_{π}^2

Current procedure

Measure cross section at a range of t values for fixed Q^2 and W. Longitudinal cross section is

$$\frac{d\sigma_L}{dt} \propto |F_\pi|^2$$

$$F_{\pi}(Q^2) = (1 + Q^2/\Lambda_{\pi}^2)^{-1}$$

Fit each data point individually.

Extrapolate these points to $t = t_{min}$, where there is least contamination from interfering backgrounds not included in the VGL model.

Extracted form factor at given Q² depends on t

Physical form factors are rather different

Currently, form factors are all the same: can we do better?

How can we incorporate the 'off-shellness' of particles.

III. New approach

Follow similar path to Miller

PHYSICAL REVIEW C 80, 045210 (2009)

Electromagnetic form factors and charge densities from hadrons to nuclei

Gerald A. Miller

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 18 August 2009; published 22 October 2009)

A simple exact covariant model in which a scalar particle Ψ is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors $F(Q^2)$. The model form factor is computed using an exact covariant calculation of the lowest order triangle diagram. The light-front

$$\begin{aligned} \mathcal{L} = &\frac{1}{2} (\partial_{\mu} \Psi_N)^2 - \frac{1}{2} m_N^2 \Psi_N^2 + \frac{1}{2} (\partial_{\mu} \pi)^2 - \frac{1}{2} m_\pi^2 \pi^2 \\ &- g_{\pi N} \Psi_N^{\dagger} \tau \cdot \pi \Psi_N \end{aligned}$$

Include electromagnetic interactions via $\partial_{\mu} \rightarrow \partial_{\mu} + ieA_{\mu}$

Construct a Gauge Invariant Bosonic Model – very much a toy model

- We wish to determined the model dependence of the currently extracted form factor for the pion.
- Our strategy will be to calculate the cross section and pion form factor in a simple model.
- Examine how well we can extract the pion form factor from the cross section

	Current Extraction	This Analysis
Model	$i\mathcal{M}_{VGL}^{\mu}=F_{\pi}(Q^2)S_F^{\pi-1}S_{\pi}^{R}(t)[i\mathcal{M}_{BTM}^{\mu}]$	$i\mathcal{M}^{\mu}=F_{\pi}(Q^2)[i\mathcal{M}^{\mu}_{BTM}]$
	\downarrow fit to \downarrow	\downarrow fit to \downarrow
Data	$^1H(e,e'\pi^+)n$	$i {\cal M}^{\mu}_{1 ext{-Loop}}$
	AIDE ERSITY	SUBAT

Simple bosonic model

 Simple bosonic model of nucleon and pion electromagnetic form factors and πNN vertex 1.0 $F_p(Q^2)$ $F_{\pi}(Q^2)$ 0.8 $\Lambda_{\pi}^2 = 5.56 \text{ GeV}^2$ 1 Nucleon Exp. Pion Exp. 0.6 $F(Q^2)$ 0.40.2 0.0∟ 0.0 SPECIAL RESEARCH CENTRE FOR THE SUBAT 0.5 1.5 2.0 2.51.0 3.0 3.5 ADELAIDE Q^2 (GeV²)

STRUCTUR

Example fit 1

$Q^2 \; ({\rm GeV^2})$	$W~({ m GeV})$	$ t_{\rm low} \ ({\rm GeV^2})$	$ t_{\rm high} \; ({\rm GeV^2})$
0.35	2.10	0.010	0.040
0.60	1.95	0.025	0.074
0.70	2.19	0.030	0.250
0.75	1.95	0.037	0.093
1.00	1.95	0.060	0.140
1.60	1.95	0.135	0.255
1.60	2.22	0.079	0.215
2.45	2.22	0.145	0.365

t range chosen to be same as experiment.

More examples....

Overview 1

- Error can be 10-20% at larger momentum transfer
- As Q² rises we need to go to higher W to reduce the error in the extracted value

Overview 2

 Error can be 10-20% at larger momentum transfer

Summary and Outlook

- A precise extraction of the pion form factor requires serious consideration of gauge invariance
- The model used so far is really a toy model

 purely bosonic
- Nevertheless, it suggests that at higher Q² one needs to go to higher energy to reduce the errors
- Current errors at large Q² could be as large as 20%
- Fermion implementation underway

