Progress in hard probes of small collision systems

Dennis V. Perepelitsa University of Colorado Boulder

8th Workshop of the APS Topical Group on Hadronic Physics Denver, CO 12 April 2019

material from: Hard Probes '18 Student Day Lecture Electron Ion Collider Users Group Mtg '18 Plenary

Figure 6: nCTEQ15 bound proton PDFs at the scale Q = 10 GeV for a range of nuclei from the free proton (A = 1) to lead (A = 208).

universal nPDF picture

dynamical pictures of "cold nuclear matter" effects

context for A+A program

arXiv:1805.05635

4

 \mathcal{X}

EW probes in (Run 2, @ 8.16 TeV) p+Pb

Isolated photon cross-section in p+Pb

- Broad measurement ($p_T = 20-500 \text{ GeV}$) of isolated photon production
 - as in pp, under-prediction by NLO calculations (w/ nuclear effects)
- Total uncertainty as low as ~3% (!)

 Data favors anti-shadowing modification in line with global nPDF fits, less obvious in shadowing region

Disfavors large initial state energy loss

Forward / backward R_{pPb} ratio vs. p_T

8

10⁻²

10⁻¹

10⁻³

 10^{-4}

"cold nuclear matter" dynamics

partons before and/or after hard scattering interacting with gluon-dense nucleus

1. parton-gluon interactions before hard scattering (initial state E-loss)

2. interactions after scattering (k_T broadening, $\Delta \phi$ decorrelation)

3. forward mono-jet production (parton in proton interacts coherently with saturated gluons)

forward "mono-jet" production

forward di-jets at LHC

New processes: photo-nuclear dijets in Pb+Pb w/ ATLAS

di-photon production @ LHC

- Detailed reference measurements at 8 TeV
- m_{yy} compared to DIPHOX,
 RESBOX, NNLO, Sherpa
 - should estimate nPDF effects!

nuclear effects at large-XAAt large-xA, Fermi motion of nucleons in nucleus:... but also, short-range p-n correlations!Friese, Sargsian, Strikman
EPJC 75 (2015) 534

Possibility to observe $x_A > 1$ configurations!

rates are sensitive to Short-Range Correlations (SRCs) in nuclei ("medium energy" physics)

QGP in small systems?

collective behavior of HF quarks

substantial E-loss & flow of HF electrons in RHIC Au+Au $\Rightarrow \eta/s = 1/4\pi$ bound!

JHEP 10 (2017) 090

R_{pA} compatible with only nPDF / saturation effects...

but very large "flow"(??)

how to understand soft & hard physics together?

unmodified recoil jet distributions in 0-20% events

explore with high-stats γ +jet in p+A...

is there an onset of jet quenching? or do we mis-understand a high-p_T v2?

System size dependence of energy loss

future p+A physics

collision species versatility @ RHIC

large aperture & kinematic reach @ LHC

future p+A physics

LHC accelerates its first "atoms" by Sarah Charley During a special one-day run, LHC operators injected lead "atoms" containing a single electron into the machine (Image: Maximilien Brice/Julien Ordan/CERN Protons might be the Large Hadron Collider's bread and butter, but that doesn't mean it can't crave more exotic tastes from time to time. On Wednesday, 25 July, https://home.cern/about/updates/2018/07/lhc-accelerates-its-first-atoms collision species versatility @ BHIC LHC <u>O+O, Ar+Ar, e</u>+Pb

large aperture & kinematic reach @ LHC RHIC sPHENIX detector