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Motivation

Jet production . .
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Even Heavy flavor jets have large cross sections

« Dijet measurements have emphasized the difference in the quenching
effects between trigger and recoil jets. It is important to find new
observables that amplify them

 Go beyond energy loss models and include higher order calculations
and resummation. Has to be done for heavy flavor jets



B-jets Hl studies in the literature
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B-jet substructure

soft-drop groomed momentum sharing distribution

Haitao Li, Vitev, 2018

Haitao Li, Vitev, 2018 the inclusive b-jet production



Invariant mass modification
for light and heavy dijets
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PYTHA baseline

* Appearsto do areasonable job in

describing light dijet production. There are
some differences in describing the dibjet
cross sections that will affect the dijet
momentum imbalance

* We can also simulate all relevant partonic
channels contributions to study in-medium
modification
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Dibjets can ensure up to 80% purity, i.e. b-jets
originating from prompt b quarks. Help get a handle
on flavor and mass effects on parton energy loss

Kang, Reiten, Vitev, Yoon 2018
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Taking a closer look at the dijet

Mass

* Approximating the dijet cross section with individual jet pT, rapidity, mass and
angular distributions (which we simulate from PYHIA )
* We have checked that aby difference are < 10%, also cancel in R,, ratios
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Di-bjets Differences very small



The energy loss calculation

* Soft gluon emission limit of the full splitting | [GeV]
kernels for heavy quarks Kang, Ringer, Vitev, 2016
* Evaluated in viscous 2+1D hydro 03
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Results for the dijet suppression

» Allthe information in this calculation Double differential dijet suppression
is contained in the full 2D di-jet pattern

suppression pattern

* Examples here given for RHIC
energies
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inclusive dijet b dijet

The suppression is largest along the main diagonal; can get enhancement in
asymmetric phase space . Arises form flavor bias (mostly) and geometric bias



Inclusive dijet and b-dijet

momentum imbalance

* Our brain is programmed to recognize patterns 2J = par /P1T.

but the changes can be subtle do do por
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Dijet mass modification

* When it comes to dijet mass modification the results are very encouraging — RHIC
example. Best seen at masses under 100 GeV.

* Also works well at LHC in this mass range and even to a few hundred GeV

* Will be an extremely valuable measurement to make (try it)
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Kang, Reiten, Vitev, Yoon 2016

* ldeal measurement for the sPHENIX collaboration. Suppression of the inclusive dijet mass more than an
order of magnitude.

* Suppression of b-dijets shows a completely different pattern. We see an enhanced sensitivity to the
transport properties of the QGP (here captured by the coupling) and the mass of heay quarks (self-
evident from the figures)



SCET approach to b-jet
production
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Inclusive jet production

» Jet production is one of the cornerstone processes of QCD. Light jets have been

studied for a long time. Recent advances based in SCET
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Resummation

Jet production is one of the cornerstonoe processes of QCD. scales

Light jets have been studied for a long time.

* Recent advances are based in SCET — precision theory for T
.. : InR _

small radius jets and heavy flavor jets
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We use the Mellin moment space
approach to solve this equation
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The SiJFs Evolve according to DGLAP-like equations n T

Resums In p/p;R

Resums In p;R/m
The integrated perturbative

kernel at the jet typical scale

Bauer, Mereghetti 2013, Dai, Kim, Leibovich 2016, 2018



B-jet production in pp

collisions
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Data are consistent with the theoretical predictions

For the ratio b-jets to inclusive jets the difference between NLO+LL
and NLO can be traced also to the differences in the inclusive jet
Cross section



Corrections in A+A collisions

Let us now focus on the jet function and final-state modification in the QGP
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The short-distance hard part Encodes the effects when the jet evolving in
remains the same the QCD medium
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Corrections in QCD medium

Collisional energy loss evaluated Neufeld, Vitev, Xing, 2014
from operator definition. Included in | i

o : ]med“(o)(z Opr) = 20ig |6 {1 — 2 — _oPr —46(1 —2)
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Medium corrections to the NLO jet function are written in terms of
integrals over splitting functions. First developed for light jets. Kang, Ringer, Vitev, 2017
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After summing over all diagrams
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Full in-medium splitting functions are now evaluated in the hydro medium



B-jet production in A-A

collisions
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Slightly less dependence on the centrality when compared to the

well-known light jet modification

Theoretical results agree well with the data for both the inclusive
cross sections and the nuclear modification factors

That does not mean there is no room for improvement



B-jet and c-jet production

In A-A collisions
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Not depend on jet prin p+p collisions

Small dependence on jet ptin Pb+Pb
collisions
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The smaller radius jet tends to dissipate more
energy in the medium

No significant difference between the c-jet
and b-jet due to the high transverse
momentum



Future directions
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Splitting functions to any

order in opacity

»  We calculated all full in-medium splitting functions to any order in opacity
» Used lightcone wavefunction approach applicable to light and heavy
partons, captures the universal features of all splittings M. Sievert et al . (2019)
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Conclusions and outlook

There is growing interest in b-jets but theoretical studies are limited

It is important to find observables with enhanced sensitivity to the medium
properties. Dijet mass is one such very promising observable

|deal way to probe the mass dependence. Preferred mass range under 100 — 200 GeV.
Ideal at SPHENIX energies. Can also be studied at the LHC before sPHENIX

Performed the first calculation of inclusive b-jets in A+A collisions using SCET and
SCET —using semi-inclusive jet functions. Allows to perform higher orders
calculation and resummation

Incorporated full in-medium splitting functions (radiative processes) and included
collisional energy dissipation as well

R, has somewhat smaller centrality dependence and R dependence for heavy flavor
jets. Somewhat limited by the fixed order calculation for lower p;

Further investigate heavy flavor-tagged jet substructure observables

Implement higher orders-in-opacity corrections in the medium



