Cross section and inelasticity of multi-TeV neutrino interactions in IceCube

Gary Binder & Spencer Klein, LBNL for the IceCube Collaboration

8th Workshop of the APS Topical Group on Hadronic Physics 10 April 2019

Outline

• High-energy neutrino deep inelastic scattering

IceCube Neutrino Observatory

• Earth absorption and cross section measurement

• Inelasticity distributions

• Future Possibilities with IceCube-Gen2

Neutrino Deep Inelastic Scattering

- At energies above ~10 GeV, neutrinos probe the quark and gluon structure of the nucleon
- Kinematic variables:

 $v_{\mu}(\overline{v_{\mu}})$

 $\mu^{-}(\mu^{+})$

 E_{μ}, θ_{μ}

Cross Section & Kinematic Ranges

- At high energy, weak boson propagator causes $Q^2 \sim M_W^2 \sim 6 \times 10^4 \text{ GeV}^2$
- Typically $x \sim 10^{-3} \left(\frac{10^6 \text{ GeV}}{E_{\nu}} \right)$
- Ultra-high-energy neutrinos probe low-x gluon structure where uncertainties are high and saturation may be important. Nuclear shadowing at low-x?
- Differential cross section:

Gluon PDFs:

A. Cooper-Sarkar, P. Mertsch, S. Sarkar JHEP 08 (2011) 042

Cross Section Calculations

- Total uncertainty on neutrinonucleon DIS cross section typically no more than a few % from proton PDFs alone
- Uncertainties from c,b,t quark masses & nuclear shadowing not yet fully quantified at NLO at high energies
- IceCube uses HERAPDF1.5 ca.
 2011, updated calculations are needed

A. Cooper-Sarkar, P. Mertsch, S. Sarkar JHEP 08 (2011) 042

Cross Section Measurements

- Accelerator based neutrino cross section measurements only extend up to ~ 370 GeV
- At energies from ~ 10³ GeV to 10⁷ GeV, IceCube has the potential to measure
 - Total cross section σ through earth absorption
 - Differential cross section $d\sigma/dy$ using v_{μ} starting tracks

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

IceCube Neutrino Observatory

Neutrino Interaction Signatures

Through-going Track Starting Track Shower

CC $\nu_{\mu}N \rightarrow \mu X$ Outside detector $\begin{array}{l} \mathsf{CC} \ \nu_{\mu} N \rightarrow \mu X \\ \mathsf{Inside \ detector} \end{array}$

 $\begin{array}{l} \mathsf{CC} \ \nu_{e,\tau} N \to e, \tau X \\ \mathsf{NC} \ \nu_{e,\mu,\tau} N \to \nu_{e,\mu,\tau} N \end{array}$

Atmospheric and Astrophysical Neutrinos

- IceCube detects mostly atmospheric neutrinos below 10⁵ GeV
- Above 10⁵ GeV, mostly astrophysical neutrinos are detected
- Both can be absorbed as they pass through the Earth

Earth Absorption

• Energy/zenith angle-dependent absorption can be used to measure total cross section

Nature 551 (2017) 596-600

Cross Section Measurement (2017)

- Sample of 10,784 through-going tracks
- Constrain a total scaling of CC & NC neutrino DIS cross section:

 $\frac{\sigma_{\text{meas.}}}{\sigma_{SM}} = 1.30^{+0.21}_{-0.19} \,(\text{stat.}) \,{}^{+0.39}_{-0.43} \,(\text{syst.})$

Estimated energy range:
 6 – 980 TeV

Cross Section with Starting Tracks/Showers

- Sample of 103 starting tracks/showers up to 2 PeV
- Better energy resolution, but showers have poorer direction resolution
- Binned cross section results

Inelasticity of Starting Tracks

- Inelasticity of starting tracks can be determined from the energy loss profile in the detector
- Difficult to disentangle hadronic shower and stochastic losses from muon
- Random Forest method developed to reconstruct hadronic shower and muon energies

Energy/Inelasticity Resolution

- Resolution on log10 total energy = 0.18
- Resolution on inelasticity = 0.19

Inelasticity Distributions

- 2650 starting tracks analyzed
- Reconstructed inelasticity distributions agree well with nominal NLO calculations in energy bins from 1 TeV to 100 TeV

Phys. Rev. D 99, 032004 (2019)

Mean Inelasticity Neutrino

- Mean inelasticity also agrees with atmospheric flux average between neutrinos/anti-neutrinos up to > 100 TeV
- Neutrino/anti-neutrino ratio 770 GeV to 21 TeV • $R = 0.77^{+0.44}_{-0.25}$
- Can be used to tune hadronic interaction models in cosmic ray air shower simulations

Neutrino-Induced Charm Production

- Charm production interactions have distinct inelasticity distribution
- Arise primarily from strange sea:

 $\nu_{\mu}s \to cX\mu$

- Zero charm production excluded at 91% CL in energy range from 1.5 TeV to 340 TeV
- Scaling on charm production cross section:

•
$$R = 0.93^{+0.73}_{-0.59}$$

Charm Interactions in Ice

- Charm interactions are occurring in IceCube's sensitive energy range
- Critical energy of charm hadrons in ice where interaction probability > decay probability:

 $\epsilon_{D^+} = 22 \text{ TeV}, \ \epsilon_{D^0} = 53 \text{ TeV}, \ \epsilon_{D_s^+} = 47 \text{ TeV},$

- Possibility to measure charm interaction cross section?
- No good calculations available

- Charm production, semi-leptonic decay $\nu_e N \rightarrow e X_1 D^{0,\pm} \rightarrow e X_1 X_2 \mu \nu_\mu$
- Interactions suppress event rate

IceCube-Gen2

- IceCube upgrade planned with 10x instrumented volume and more sensitive optical sensors
- Neutrino energies up to 10¹⁷ eV may be observed, equal to 14 TeV LHC center-of-mass energy

"IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica" arXiv:1412.5106

Potential Topics with IceCube-Gen2

- Precision cross section measurements, tests of low-x saturation models
- Neutrino-induced charm/bottom/top quark production
- Non-DIS interactions:

 $\nu_{\mu}N \to \mu^- W^+ N$

- Physics beyond the standard model
 - Leptoquarks, low-scale QG, sphalerons, ...

Radio Neutrino Detection

- New techniques needed to make detection of neutrinos above 10¹⁷ eV a routine occurrence
- Askaryan Effect: Coherent radio emission from electromagnetic showers in ice
- ARA/ARIANNA/ANITA experiments have demonstrated the technology
- Inelasticity of v_e could be measured from elongated showers due to the LPM effect

Summary

- Ultra-high-energy neutrino interactions are sensitive to low-x nuclear structure and physics beyond standard model
- Uncertainties in high-energy neutrino DIS not fully quantified yet
- Earth absorption can be used to constrain total cross sections up to $\sim 10^{15}~{\rm eV}$ with IceCube
- Inelasticity distributions in IceCube agree well with current calculations, and are sensitive to heavy flavor production & interaction physics
- IceCube-Gen2 and radio detection will allow more powerful studies at the most interesting ultra-high neutrino energies around $\sim 10^{17}~{\rm eV}$

