Measurement of long-range correlations in Z-boson tagged pp collisions

Soumya Mohapatra (Columbia University)

Ridge in pp collisions

- Ridge "appears" at high multiplicity.
- Ridge signal much smaller compared to other features of correlation.

Phys. Rev. C 96 (2017) 024908

Analysis of 2PCs in pp collisions

- First step: look at long-range correlation component |Δη|>2
 - Removes near-side jet peak: same as what is done in A+A collisions
- Still dominated by away-side jet.
- Need new method to extract ridge signal.

Analysis technique: Template Fitting Procedure ⁴

Phys. Rev. C 96 (2017) 024908

• A template fitting procedure used to extract long-range correlation.

- · Fit correlation in high multiplicity events with two component Template :
 - C^{periph}: Correlation in peripheral events (N_{ch}<20) : Jet background
 - C^{ridge} : Pedestal* $(1 + 2v_n^2 cos(n\Delta \phi))$

: True signal

Template Fitting : Multiplicity dependence

3.62 3.62 15=13 TeV 2.0-km[6.5,0] 0 G + F^{mm(AD)} 3.56 0 G + F^{mm(AD)} 3.52 0 G + F^{mm(AD)} 3.54 0 G + F^{mm(AD)} 3.55 3.48 0 G + F^{mm(AD)} 3.55 0 G + F^{mm(AD)} 3.55 0 G + F^{mm(AD)} 3.55 0 G + F^{mm(AD)} 1 G + F^{mm(AD)} 1 G + F^{mm(AD)} 3.55 0 G + F^{mm(AD)} 1 G + F^{mm(AD)}

Considerable long-range correlation even in low & intermediate multiplicity events.

Broadening of away-side and emergence of peak on near-side well described.

Comparison of systems & energies : pp and p+Pb⁶

For p+Pb clear multiplicity dependence is seen for v_2 .

No dependence on multiplicity seen for $pp v_2$.

Why is there no multiplicity dependence to $pp v_n^7$

- One answer comes from U. Heinz and collaborators.
- No correlation between multiplicity and eccentricity in pp collisions
- But correlation present between eccentricity and impact parameter
- Need to bin pp events not by multiplicity but by impact parameter!

Phys. Rev. C. 94.024919

How to select low-impact parameter pp events? 8

Require process with large momentum transfer (large q²)

 Large q² ⇒ small time-scale/short range ⇒ smaller impact parameter

• Can impose large q^2 requirement by requiring a Z-boson in the event : $|q^2| \sim (90 \text{ GeV})^2$

 Z-boson requirement is easy to impose: require two muons with invariant mass in the region 80-100 GeV

But this introduces a different complication

Collision Event at 7 TeV with 2 Pile Up Vertices 9

Correlation analyses only use low-luminosity pp data.

Typically only one interaction per event. Two or more interactions very rare.

Analyze high-pileup pp events

Need to go to nominal LHC luminosities, to get sufficient "Z"-tagged events

bunch crossings can have up to 40 simultaneous pp interactions

Pileup makes 2PC study difficult!

10

Estimating pileup in Z-tagged pp events ¹¹

Event with Z-boson identified by presence of two high-p_T muons with invariant mass between 80-100 GeV

Estimating pileup in Z-tagged pp events ¹²

Event with Z-boson identified by presence of two high-p_T muons with invariant mass between 80-100 GeV

We are interested in correlations between the "other" particles in the event

Estimating pileup in Z-tagged pp events ¹³

Event with Z-boson identified by presence of two high-p_T muons with invariant mass between 80-100GeV

We are interested in correlations between the "other" particles in the event

Have many pileup collisions. Tracks from pileup collisions well separated from Z-event can be easily removed

Estimating pileup in Z-tagged pp events ¹⁴

Problem arises when pileup vertices are very close to the Z-event vertex.

It becomes difficult to distinguish such pileup tracks from the "signal" tracks. Event with Z-boson identified by presence of two high-p⊤ muons with invariant mass between 80-100GeV

We are interested in correlations between the "other" particles in the event

Have many pileup collisions. Tracks from pileup collisions well separated from Z-event can be easily removed

Estimating pileup in Z-tagged pp events ¹⁵

Pick a second "unbiased" event recorded under identical luminosity conditions as the first event.

"Unbiased" : no selection criteria, except requirement of identical luminosity condition as first event.

Estimating pileup in Z-tagged pp events ¹⁶

Pick a second "unbiased" event recorded under identical luminosity conditions as the first event.

"Unbiased" : no selection criteria, except requirement of identical luminosity condition as first event.

Select tracks in second event, pretending there was a Ztagged collision in it, in the same location as in the first event.

Call this combination "Mixed" event.

Mixed=> tracks from 2nd event, but vertex position from first.

Analyze high-pileup pp events

The "Direct Event" consists of "Signal" and "Pileup" tracks

The "Mixed" event gives an estimation of the number of pileup tracks as well as their correlation in $\Delta \phi$.

i.e. <Mixed>=<Pileup>

Correcting multiplicities

Plot shows probability distribution for number of <u>Signal</u> tracks for events with different number of <u>Direct</u> tracks:

- 1. Black : 30 Direct tracks
- 2. Blue: 60 direct tracks
- 3. Red: 90 direct tracks

Bands indicate ±r.m.s. widths of the distributions centered around mean values

• When considering the pair correlations we have:

```
Direct<sup>a</sup> x Direct<sup>b</sup> = Signal<sup>a</sup> x Signal<sup>b</sup>
+ Signal<sup>a</sup>xPileup<sup>b</sup> + Pileup<sup>a</sup> x Signal<sup>b</sup>
+ Pileup<sup>a</sup> x Pileup<sup>b</sup>
```

• When considering the pair correlations we have:

```
Direct<sup>a</sup> x Direct<sup>b</sup> = Signal<sup>a</sup> x Signal<sup>b</sup>
+ Signal<sup>a</sup>xPileup<sup>b</sup> + Pileup<sup>a</sup> x Signal<sup>b</sup>
+ Pileup<sup>a</sup> x Pileup<sup>b</sup>
```

Rearranging we get:

Signal^axSignal^b = Direct^axDirect^b - Pileup^axPileup^b - Signal^axPileup^b - Pileup^axSignal^b

• When considering the pair correlations we have:

```
Direct<sup>a</sup> x Direct<sup>b</sup> = Signal<sup>a</sup> x Signal<sup>b</sup>
+ Signal<sup>a</sup>xPileup<sup>b</sup> + Pileup<sup>a</sup> x Signal<sup>b</sup>
+ Pileup<sup>a</sup> x Pileup<sup>b</sup>
```

Rearranging we get:

```
Signal<sup>a</sup>xSignal<sup>b</sup> = Direct<sup>a</sup>xDirect<sup>b</sup> - Pileup<sup>a</sup>xPileup<sup>b</sup>
- Signal<sup>a</sup>xPileup<sup>b</sup> - Pileup<sup>a</sup>xSignal<sup>b</sup>
```

Unfortunately "Signal" appears on both LHS and RHS

• When considering the pair correlations we have:

```
Direct<sup>a</sup> x Direct<sup>b</sup> = Signal<sup>a</sup> x Signal<sup>b</sup>
+ Signal<sup>a</sup>xPileup<sup>b</sup> + Pileup<sup>a</sup> x Signal<sup>b</sup>
+ Pileup<sup>a</sup> x Pileup<sup>b</sup>
```

Rearranging we get:

```
Signal<sup>a</sup>xSignal<sup>b</sup> = Direct<sup>a</sup>xDirect<sup>b</sup> - Pileup<sup>a</sup>xPileup<sup>b</sup>
- Signal<sup>a</sup>xPileup<sup>b</sup> - Pileup<sup>a</sup>xSignal<sup>b</sup>
```

- Unfortunately "Signal" appears on both LHS and RHS
- (Very legitimate) Assumption : <Signal^axPileup^b>=<Signal^a><Pileup^b> Where <...> indicates average over events

• When considering the pair correlations we have:

```
Direct<sup>a</sup> x Direct<sup>b</sup> = Signal<sup>a</sup> x Signal<sup>b</sup>
+ Signal<sup>a</sup>xPileup<sup>b</sup> + Pileup<sup>a</sup> x Signal<sup>b</sup>
+ Pileup<sup>a</sup> x Pileup<sup>b</sup>
```

Rearranging we get:

Signal^axSignal^b = Direct^axDirect^b - Pileup^axPileup^b - Signal^axPileup^b - Pileup^axSignal^b

- Unfortunately "Signal" appears on both LHS and RHS
- (Very legitimate) Assumption : <Signal^axPileup^b>=<Signal^a><Pileup^b> Where <...> indicates average over events
- We get:

<Signal^axPileup^b>=<Signal^a+Pileup^a><Pileup^b> - <Pileup^b> - <Pileup^b> - <Pileup^b> - <Pileup^b> - <Pileup^b>

- So we get:
 <Signal^axSignal^b> = <Direct^axDirect^b> <Pileup^axPileup^b> -<Direct^a><Pileup^b> - <Pileup^a><Direct^b> +2<Pileup^a><Pileup^b>
- This is the "Master formula" for correcting the 2PC with the substitution: Pileup → Mixed
- <Signal^axSignal^b> = <Direct^axDirect^b> <Mixed^axMixed^b> -<Direct^a><Mixed^b> - <Mixed^a><Direct^b> +2<Mixed^a><Mixed^b>
- Where the items in the last two lines of the above equation are obtained from correlating tracks between different events

Example Correction Procedure

Example Correction Procedure

~30% change in number of pairs independent of $\Delta \phi$

Example Correction Procedure

- <<u>S</u>S>= <<u>D</u>D>-<<u>M</u>M> -2<<u>D</u>M>+2<<u>M</u>><<u>M</u>>
- ~30% change in number of pairs independent of **Δφ**

Small change in modulation only on away-side

Template fits after pileup correction

- Once the correlations are corrected for Pileup, we can proceed with the template fitting analysis
- Plots Show example fits to extract the Fourier Coefficients
- Reminder:
 - \circ Measured 2PC= (Scale1)*(Low multiplicity 2PC) + Scale2*(1+2v_{n,n}cos(n\Delta\phi))
 - $_{\circ}$ $\,$ Parameters of Template fit are "Scale1" and the $v_{n,n}(n{=}2{-}4)$

v₂ signal : before and after pileup correction ²⁹

- v₂ before and after pileup correction : multiplicity dependence
- Left panel: 8 TeV Z-tagged v₂ : before and after correction
- Right Panel: Ratio of before/after correction

v₂ in Z-boson tagged pp events

Left panel: v₂ in Z-tagged 8 TeV events

ATLAS-CONF-2017-068

- compared to v₂ in inclusive 5 TeV and 13 TeV pp collisions
- Weak multiplicity dependence in Z-tagged v₂
- Right panel ratio to 13 TeV measurements

The v₂ in Z-tagged events shows slight increase rather than a decrease!

Summary

- Global azimuthal correlations present in inclusive pp collisions
- Very unexpected multiplicity dependence of v₂ in pp: no multiplicity dependence!
- Possible explanation: poor correlation between multiplicity and impact parameter
 - U. Heinz et.al. Phys. Rev. C. 94.024919
- Measure v₂ in events with small impact parameter:
 - selected by requiring a Z-boson
 - Considerable problems from pileup
- Developed a data-driven procedure to correct for pileup in multiplicity and 2PC distributions
- Measurement shows that v₂ in Z-tagged is not reduced compared to inclusive pp collisions!

Comparison of systems & energies : pp and p+Pb³²

Consistent values for v_2 between 5.02 TeV and 13 TeV pp collisions. No dependence of v_2 on collision energy.

 p_{T} dependence very similar between pp and $p{+}Pb$