

Charming Discoveries in Matter-Antimatter Annihilations

Johan Messchendorp (University of Groningen)

The dynamics of QCD!

The dynamics of QCD!

pion, kaon, ...

"ordinary matter"

"matter at extremes"

- Symmetric e⁺e⁻ collider:
 √s = 2.0 4.6 GeV
- Design luminosity:
 - 1x10³³ cm⁻²s⁻¹ (at ψ(3770), achieved in 04/2016)
- Data taking started in 2009

- Symmetric e⁺e⁻ collider: > $\sqrt{s} = 2.0 - 4.6 \text{ GeV}$
- Design luminosity:
 - 1x10³³ cm⁻²s⁻¹ (at ψ(3770), achieved in 04/2016)
- Data taking started in 2009

Charmonium-like particles - terra incognita

X(3872) - "Poster Boy" of a new era!

X(3872) - "Poster Boy" of a new era!

The mysterious "Y" states: Y(4260, 4360, 4660)

FIG. 1 (color online). The $\pi^+\pi^- J/\psi$ invariant-mass spectrum in the range 3.8–5.0 GeV/ c^2 and (inset) over a wider range that includes the $\psi(2S)$. The points with error bars represent the selected data and the shaded histogram represents the scaled data from neighboring e^+e^- and $\mu^+\mu^-$ mass regions (see text). The solid curve shows the result of the singleresonance fit described in the text; the dashed curve represents the background component.

142001-5

-10

FIG. 2.

data even

and havir

scaled dis

(see text)

events, ar

events.

>events are observe

 $12\,142\pm809\,\psi(2S)$

Z(3900) - APS highlight of 2013!

+ Data 70 E 100 🕂 data GeV/c² - Total fit 60 - Fit ···· Background fit 80 Background PHSP MC 50 Sideband Events / 0.02 60 40 30 20 20 10 0 0 3.7 3.8 3.9 3.9 3.7 3.8 4.0 4 4.1 4.2 $M_{max}(\pi^{\pm}J/\psi)$ (GeV/c²) $M_{max}(\pi J/\psi)$ (GeV/c²)

PRL110, 252001, 252001, 252002 (2013)

Z(3900) - APS highlight of 2013!

PRL110, 252001, 252001, 252002 (2013)

Z(3900) and beyond...

Z_c(3900): PRL110, 252001 (2013) Z_c(4040): PRL112, 132001 (2014) Z_c(3885): PRL112, 022001 (2014) X(3872): PRL112, 092001 (2014) Z_c(4020)⁰: PRL113, 212002 (2014) X(3823): PRL115, 011803 (2015) Z_c(3900)⁰: PRL115, 112003 (2015) Z_c(4025)⁰: PRL115, 182002 (2015) Z_c(3885)⁰: PRL115, 222002 (2015)

Multiplet(s) of new matter discovered!

Break-through! It is just the beginning...

XYZ particles: tip of the iceberg?

Production and decay?

- XYZ region: 3.8 ~ 4.6 GeV, integrated luminosity: 12 fb⁻¹
- 104 energy points between 3.85 and 4.59 GeV (R scan)
- ~20 energy points between 2.0 and 3.1 GeV

Precision "Y" spectroscopy at BESIII

Precision "Y" spectroscopy at BESIII

The next generation...

BESIII at IHEP, China

- > electron+positron, upgrade foreseen
- > couples to J^{PC}=1⁻⁻ states
- > clean environment

The next generation...

BESIII at IHEP, China

- > electron+positron, upgrade foreseen
- > couples to J^{PC}=1⁻⁻ states
- > clean environment

PANDA at FAIR, Germany

- > anti-proton+proton or light nuclei
- > couples to all conventional J^{PC} states
- > hadronic environment, background

High Energy Storage Ring - precision antiprotons

High resolution mode:

- e- cooling : p<8.9 GeV/c
- 10¹⁰ antiprotons stored
- Luminosity up to 2x10³¹ cm⁻²s⁻¹
- $dp/p = 4x10^{-5}$

High intensity mode:

- Stochastic cooling
- 10¹¹ antiprotons stored
- Luminosity up to 2x10³² cm⁻²s⁻¹
- $dp/p = 2x10^{-4}$

Phase 1+2: max. 10¹⁰ antiprotons stored

Versatility of antiprotons

Versatility of antiprotons

p momentum [GeV/c] Large mass-scale coverage - center-of-mass energies from 2 to 5.5 GeV 2 10 12 15 0 8 4 - from light, strange, to charm-rich hadrons $\overline{\Omega \Omega}$ DD ຽ້ຽ $\Lambda_{c}\overline{\Lambda}_{c}$ - from guark/gluons to hadronic degrees of freedom $D_s\overline{D}_s$ High hadronic production rates ccqq pppp - charm+strange factory -> discovery by statistics! ccg - gluon-rich production -> potential for new exotics nng,ssg - good perspectives already at "Day-One"! ccg nng,ssg ggg,gg ggg light qq cc $\pi,\overline{\rho},\overline{\omega},f_2,K,K^*$ J/ψ , η_c , χ_{cJ} 2 3 1 4 5 6 mass [GeV/ c^2]

20

Versatility of antiprotons

Systematic and precise tool to rigorously study the dynamics of QCD

- line shape of X(3872)
- neutral+charged Z-states
- X,Y,Z decays
- search for h_c', ³F₄, …
- spin-parity/mass&width of ³D₂

- line shape/width of the hc
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

Note: LHCb discovery of 3D3 candidate: [arXiv:1903.12240]

Line-shape study of the X(3872)

Resonance scanning

Energy scan with e^+e^- :energy resolution1-2 MeV (primarily JPC=1--)Energy scan with $p\overline{p}$:energy resolution240 keV (E760/835@Fermilab) $\approx 50 \text{ keV}$ (PANDA@FAIR)

Resonance scanning, case study

arXiv:1812.05132

$$\bar{p}p \to X(3872) \to J/\psi \pi^+ \pi^-$$

Resonance scanning, case study

arXiv:1812.05132

$$\bar{p}p \to X(3872) \to J/\psi \pi^+ \pi^-$$

Charming discoveries in antimatter-matter annihilations

Charming discoveries in antimatter-matter annihilations

The charm sector is hot...

- New multiplet of "exotic" charmonium-like states found.
- Hidden-charm hadrons advantageous as probes!

The charm sector is challenging...

- Nature of XYZ particles remains unclear.
- Opportunity: precision study of the properties of hidden-charm above and below the open-charm threshold.

The future is bright...

- BESIII: lots of data for vector meson states,
 - intensity and energy increase foreseen.
- PANDA: complementary probe with a data challenge!
- lets not forget: B-factories (BelleII, LHCb), tagged-photon facilities (Glue-X),...

j.g.messchendorp@rug.nl