DVCS and exclusive neutral pion at Jefferson Laboratory: Accomplishments and future developments

Eric Fuchey University of Connecticut

8th workshop of the APS Topical Group on Hadronic Physics Denver, Colorado Tuesday, April 11th 2019

Reminder on Generalized Parton Distributions (GDPs):

- Nucleon spin puzzle and GPDs
- Experimental access to GPDs
 - Deeply Virtual Compton Scattering
 - Deeply Virtual Meson Production (π^{0})

DVCS/ π^0 program at Jefferson Lab:

- Measurements at 6 GeV (*p*-DVCS, *n*-DVCS, $ep \rightarrow ep\pi^0$, $en \rightarrow en\pi^0$):
 - Results: Highlights and open questions;
- → Measurements at 12 GeV:
 - → A taste of Hall A (preliminary) results
 - Ongoing and upcoming measurements and projections

Reminder on Generalized Parton Distributions (GPDs) Nucleon spin puzzle and GPDs

Nucleon Spin puzzle: $S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{q} + L_{g} => \Delta \Sigma \sim 0.3, \Delta G \sim 0.1$ (ep experiments), $L_{q,g}$ unknown Nucleon spin is more than the sum of the spins of its constituents!

Introduction to Generalized Parton Distributions (GPDs) **Experimental access**

[X. Ji, Phys. Rev. Lett. 78, 610-613 (1997)]

Advantages of DVCS measurement:

- "clean" (no other non-perturbative quantity than GPDs)

- DVCS amplitude accessible with DVCS/BH interference

Generalized Parton Distributions : Experimental access (cont'd)

4 "chiral-even" GPD: $H, E, \widetilde{H}, \widetilde{E}$ +

4 "chiral-odd" GPD_T: $H_T, E_T, \widetilde{H}_T, \widetilde{E}_T$

=> Access to total angular momentum **J** via Ji sum rule: $\int dx x [H+E](t=0) = 2J$

DVMP measurements:

* not as "clean" as DVCS: depends on distribution amplitude (DA)

Advantages:

* Flavor decomposition

(depending on meson quark content) * different combinations of GPDs (depends on meson quantum numbers)

Meson electroproduction: GPD => $\sigma_{1}(\alpha 1/Q^{6});$ $GPD_{\tau} \Rightarrow \sigma_{\tau}$: **NLO** but *significant contribution* (see π^0 results)

Here, will focus on π^{o} measurements; Come "for free" with (*i.e.*, significant contamination of) DVCS measurements (comparable final state and phase space) **Reminder on Generalized Parton Distributions (GDPs):**

- Nucleon spin puzzle and GPDs
- Experimental access to GPDs
 - Deeply Virtual Compton Scattering
 - → Deeply Virtual Meson Production (π^{0})

DVCS/π⁰ program at Jefferson Lab:

- Measurements at 6 GeV (*p*-DVCS, *n*-DVCS, $ep \rightarrow ep\pi^0$, $en \rightarrow en\pi^0$):
 - Results: Highlights and open questions;
- Measurements at 12 GeV:
 - → A taste of Hall A (preliminary) results
 - Ongoing and upcoming measurements and projections

DVCS/π^o program at Jefferson Lab: 6 GeV era

Jefferson Lab @ 6 GeV: E_{max} ~ 6 GeV in Halls A, B, C

Continuous wave electron beam, High luminosity (*I*_{max}~200 µA), high polarization (≥ 85 %), => Great facility for DVCS/DVMP measurements in valence region

April 11th 2019

DVCS/ π^0 measurements in Halls A, B

Measurements at 6 GeV experimental setups

Hall A:

- High luminosity: ($\angle ~10^{37} \text{ cm}^{-2} \text{ s}^{-1}$)
- High resolution equipements:
- High Resolution Spectrometer (HRS) + *PbF*, *Calorimeter*

CLAS (Hall B):

- CEBAF Large Acceptance Spectrometer
- + inner calorimeter

Measurements on large kinematic coverage

p-DVCS GPD <u>H</u> Hall B 6 GeV

6 GeV measurements Results: DVCS on proton

CLAS

First evidence of DVCS with Beam Spin Asymmetry (BSA) (ex aequo with HERMES)

[Stepanyan *et al.*: Phys. Rev. Lett. **87** (2001) 182002]

Other BSA data: [Girod et al.: Phys. Rev. Lett. 100 (2008) 162002, Gavalyan et al.: Phys. Rev. C80 (2009) 035206]

Compton Form Factor *H* from *cross sections* [Jo *et al.*: Phys. Rev. Lett. **115** (2015), 212003] [Hirlinger-Saylor *et al.*: Phys. Rev. **C 98** (2018) 045203]

9

6 GeV measurements Results: DVCS on proton

Hall A

First DVCS cross sections published in valence region: [Munoz et al.: Phys. Rev Lett. 97 (2006), 262002] reanalyzed in 2015 [Defurne et al.: Phys. Rev. C 92, 055202 (2015)]

Compton Form Factors (x_{Bj} = 0.36) extracted from *high precision cross sections* measurements (Defined in Belitski, Mueller, PRD82 (2010), 074010)

 \Rightarrow no deviation from Q^2 scaling.

p-DVCS
GPD H6 GeV measurementsHall A 6 GeVResults / open questions: DVCS on proton

"Generalized Rosenbluth" (DVCS²/DVCS-BH) separation data: Evidence of contribution beyond leading order/leading twist (gluons ?)

[Defurne et al. Nature Commun. 8 (2017) no. 1, 1408]

NLO-LT p'

p'

р

p(A)-DVCS
GPD H6 GeV measurementsHall B 6 GeVHighlights / open questions: p-DVCS off ⁴He

Coherent ⁴He-DVCS data [Hattawy *et al.*, Phys. Rev. Lett. **119** (2017) no.20, 202004] Well described by LO/LT calculations

Incoherent *p*-DVCS off ⁴He [Hattawy *et al.*, arXiv:1812.07628 [nucl-ex]] Suppressed wrt free *p*-DVCS (EMC-like effect) No existing model describes this

For more details on EMC, check F. Hauenstein's slides from Wednesday, session: "Production and Decays"

April 11th 2019

Solide curves: Off shell calculations: [S. Liuti and K. Taneja, Phys. Rev. **C 72**, 032201 (2005)] Dashed curve: [V. Guzey, A. W. Thomas and K. Tsushima, Phys. Lett. **B 673**, 9 (2009)]

6 GeV measurements Highlights: global *p*-DVCS analysis

Proton tomography:

p-DVCS

GPD H

6 GeV

Transverse spatial distribution of partons = f(partons momentum x)

 $H^{q}_{-}(x,0,t) = q_{v}(x)e^{B^{0}_{-}(x)t} \implies \langle b^{2}_{\perp} \rangle^{q}(x) = 4B^{0}_{-}(x)$ [Dupré, Guidal, Vanderhaeghen, Phys. Rev. **D95** (2017) no.1, 011501] [Dupré, Guidal, Niccolai Vanderhaeghen, Eur. Phys. J. **A53** (2017) no.8, 171]

Model dependent extraction of GPD *H* from *p*-DVCS data using VGG

[Vanderhaeghen, Guichon, Guidal, Phys. Rev. **D60,** 094017 (1999)]

Proton shrinks with increasing parton momentum

NB: COMPASS/HERA has performed a similar work, but with a different method (see N. d'Hose talk on Friday, session "GPDs and TMDs")

p-DVCS GPD H 6 GeV

6 GeV measurements Highlights: global p-DVCS analysis

Proton Pressure Distribution

Gravitational Form Factors evaluated with DVCS data, *exploiting the relations between GPDs and proton momentum-energy tensor:* [Burkert, Elouadrhiri, Girod, Nature volume **557**, pages 396–399 (2018)]

6 GeV measurements Results / highlights: DVCS on neutron

n-DVCS => GPD *E*

n-DVCS

GPD E

Hall A 6 GeV

n-DVCS analysis with Rosenbluth separation *not finalized*, but evidence for a positive *n*-DVCS signal

VGG: Vanderhaeghen, Guichon, Guidal, Phys. Rev. **D60**, 094017 (1999) GT: Guzey, Teckentrup, Phys. Rev. **D74** (2006) 054027. QCDSF/UKQCD Coll.: Eur. Phys. J. **A32** (2007) 445. LHPC Coll.: Phys. Rev. **D77** (2008) 094502. Diehl, Feldmann, Jakob, Kroll, Eur. Phys. J. **C39** (2005) 1.

<mark>p</mark>-DVMP GPD_τ Hall A 6 GeV

6 GeV measurements Results: $ep \rightarrow ep\pi^0$

Hall A

First π^0 cross section in valence region

[EF *et al.*, Phys. Rev. C83 (2011), 025201] => unsatisfactory description by GPD models w/o GPD_T + suspicion of $\sigma_{T}(\pi^{0})$ dominance

(reinforced by suprisingly large $\sigma_{T}(\pi^{+})$ from Hall C data [T. Horn *et al.*, Phys. Rev. **C78** (2008), 058201])

ep → *ep*π⁰ with Rosenbluth (σ_T/σ_L) separation: [Defurne *et al.*, Phys.Rev.Lett. **117** (2016) no.26, 262001] Experimental confirmation: dominance of $\sigma_T(\pi^0)$ + need of GPD_T for description of *ep* → *ep*π⁰.

Right: calculations with chiral odd GPDs (**GPD**_T) *agree pretty well with data* Solid: [S. Goloskokov and P. Kroll, Eur. Phys. J. **A 47**, (2011) 112] dashed: [Goldstein, Gonzalez-Hernandez, Liuti, Phys. Rev. **D84**, 034007 (2011)]

n-DVMP
GPD_T6 GeV measurementsResults: highlights / open questions: $en \rightarrow en\pi^0$

$en \rightarrow en\pi^0$ cross sections w/ Rosenbluth separation: Combination with proton data: first flavor separation

[Mazouz et al., Phys.Rev.Lett. **118** (2017) no.22, 222002]

Curves: [Goloskokov, Kroll, Eur. Phys. J. **A 47**, (2011) 112] (solid: *u*; dashed: *d*)

Fair agreement of these calculations with Hall A data.

$$\overline{E}_T = 2 \widetilde{H}_T + E_T$$

April 11th 2019 Uncertainty of the relative phase between u and d Would need a η measurement at similar kinematic (Hall A PbF₂ too small) 17

6 GeV measurements Results: $ep \rightarrow ep\pi^0$

CLAS

First π⁰ Beam Spin Asymmetry [De Masi *et al.*, Phys. Rev. C77, 042201 (2008)] Cross sections [Bedlinskiy *et al.*: Phys. Rev. Lett. **109** (2012) 112001; Phys.Rev. C90 (2014) 025205]

+*Target Spin Assymetries*, *Double Spin Asymmetries* with **longitudally polarized target** [Kim *et al.*: Phys.Lett. **B768** (2017) 168-173]

Large data sets over large kinematic coverage Confirms need of GPD_{T} for $ep \rightarrow ep\pi^0$ description

More details in A. Kim's talk (17:30 today, this session)

Curves: calculations with chiral-odd GPDs => mainly contribute to σ_{τ}

April 11th 2019

⁰¹⁹ Solid: [S. Goloskokov and P. Kroll, Eur. Phys. J. **A 47**, (2011) 112] dashed: [Goldstein, Gonzalez-Hernandez, Liuti, Phys. Rev. **D84**, 034007 (2011)] **Good agreement between these calculations and CLAS data.** **Reminder on Generalized Parton Distributions (GDPs):**

- Nucleon spin puzzle and GPDs
- Experimental access to GPDs
 - Deeply Virtual Compton Scattering
 - → Deeply Virtual Meson Production (π^{0})

DVCS/ π^0 program at Jefferson Lab:

- Measurements at 6 GeV (*p*-DVCS, *n*-DVCS, $ep \rightarrow ep\pi^0$, $en \rightarrow en\pi^0$):
 - Results: Highlights and open questions;
- Measurements at 12 GeV:
 - → A taste of Hall A (preliminary) results
 - Ongoing and upcoming measurements and projections

Measurements at 12 GeV: experimental setups/kinematic coverage

=> complementarity between both halls

12 GeV measurements:

p-DVCS GPD H Hall A 12 GeV

A taste of Hall A 12 GeV *preliminary* DVCS results

High precision DVCS cross section measurement Analysis credit: F. Georges (IPN Orsay)

Presented at Jefferson Lab Hall A collaboration meeting 2019 (1/30/2019) by H. Rashad (ODU)

(As of current analysis, Q² scaling of CFF seems to hold)

12 GeV measurements:

A taste of Hall A 12 GeV *preliminary* $ep \rightarrow ep\pi^0$ results

High precision π^0 cross section measurement Analysis credit: M. Dlamini (Ohio U.)

p-DVMP

GPD H

Hall A

12 GeV

Presented at Jefferson Lab Hall A collaboration meeting 2019 (1/30/2019) by H. Rashad (ODU)

As of current analysis, $\sigma_{_{T}}$ dominance can still be infered from data

(with comparison with GK model [S. Goloskokov and P. Kroll, Eur. Phys. J. A 47, (2011) 112]) . April 11th 2019

p-DVCS/MP **12 GeV upcoming measurements:** GPD H Upcoming experiments: p-DVCS/ π^0 with Hall C HMS/NPS Hall C **12 GeV**

 $\sigma_{PbF2} = 0.229$

σ_{PbWO4} = 0.127

2.5

MM² GeV²

0.5

1.5

NPS: Neutral Particle Spectrometer (calorimeter + sweeping magnet)

DVCS/π⁰ proposal (*Munoz*, Paremuzian, Horn, Hyde, Roche): https://www.jlab.org/exp_prog/proposals/13/PR12-13-010.pdf NB: Other measurements planned with NPS (TCS, WACS, SIDIS, etc.)

NPS layout on SHMS carriage

• DVCS H(e,e' γ)p, Deep H(e,e' π^0)p

Capability for good statistical accuracy at high **Q**², **X**_{Bi}.

=> potential to confirm/infirm gluon contribution in valence region evidenced by Hall A **Rosenbluth separation data.**

p-DVCS/MP GPD H Hall B 12 GeV

12 GeV upcoming measurements:

Ongoing/upcoming experiments: *p***-DVCS/π**⁰ with CLAS12

DVCS measurement on proton (U+L)

(Sabatie, Biselli, Egiyan, Elouadrhiri, Holtrop, Ireland, Kim) <u>https://www.jlab.org/exp_prog/proposals/06/PR12-06-119.pdf</u>

$π^0/η$ measurement on proton

(Stoler, Joo, Kubarovsky, Ungaro, Weiss) https://www.jlab.org/exp_prog/proposals/06/PR12-06-108.pdf

New DVCS/ π^{0}/η measurements on large kinematic coverage

n-DVCS GPD *E* Hall B 12 GeV

12 GeV upcoming measurements: Upcoming experiments: *n*-DVCS/π⁰ with CLAS12

DVCS measurement on (unp) D₂ with recoil neutron detection (*Niccolai*, Sokhan) *https://www.jlab.org/exp_prog/proposals/11/PR12-11-003.pdf*

DVCS measurement on (L. pol) D_2 with recoil neutron detection

(*Niccolai*, Biselli, Keith, Pisano, Sokhan) <u>https://www.jlab.org/exp_prog/proposals/16/E12-06-109A.pdf</u>

n-DVCS measurements on large kinematic coverage (mostly unexplored for n-DVCS)

n/A-DVCS GPD E Hall B 12 GeV

12 GeV upcoming measurements: Upcoming experiments: CLAS12 with ALERT

DVCS (π^0) measurements on D₂, ⁴He, with recoil/ measurement

Coherent measurements (Hadifi, Hattawy, Dupré, *Meziani*, Paolone) <u>https://www.jlab.org/exp_prog/proposals/17/PR12-17-012.pdf</u> Incoherent measurement (*Armstrong*, Hadifi, Dupré, Meziani) <u>https://www.jlab.org/exp_prog/proposals/17/PR12-17-012B.pdf</u>

ALERT: A Low Energy Recoil Tracker

Detection of low energy p, ³H, ³He, ⁴He: => *Recoil detection / spectator tagging* => Unambiguous identification of coherent and incoherent DVCS => reduced systematics on *n*-DVCS and bound *p*-DVCS

=> Study in more detail the "EMClike" effect evidenced by existing *p*-DVCS measurement off ⁴He.

For more details on coherent DVCS and ALERT, check Z.E. Meziani's slides from today, session: "3D imaging" GPDs: promising tool to solve the nucleon spin puzzle;

Jefferson Lab is a great facility to study GPDs (high luminosity, beam polarization)

A wealth of $DVCS/\pi^0$ data produced at Jefferson Lab 6 GeV, which lead to improved knowledge on nucleon structure:

- \Rightarrow constraint on J_d/J_u
- => Nucleon tomography in valence region
- => Pressure distribution in the proton
- => Role of transverse GPDs in meson production
- => First flavor separation of GPDs

Yet data did not address or raise many other questions:

=> Role of gluons in valence region

=> Ambiguities on GPD flavor separation

=> Suppression of CFF in incoherent DVCS off nuclei

By extending kinematic coverage of existing measurements, or allowing new ones, Jefferson Lab at 12 GeV will help address these questions

I could not talk about: * other DVMP channels (DV\phiP); April 11th 2019 * EIC program * etc...

Thank you for your attention !

6 GeV measurements **Results:** $ep \rightarrow ep\pi^0$

Hall A

First π^0 cross section in valence region [EF *et al.*, Phys. Rev. C83 (2011), 025201] => unsatisfactory description by LO GPD models + Suspicion of $\sigma_{\tau}(\pi^0)$ dominance

(reinforced by suprisingly large $\sigma_{\tau}(\pi^{+})$ from Hall C data [T. Horn *et al.*, Phys. Rev. **C78** (2008), 058201])

Curves: *left*: VGG: [Vanderhaeghen, Guichon, Guidal, Phys. Rev. **D60**, 094017 (1999)] *Right*: calculations with chiral odd GPDs (GPD_T) *agree pretty well with data*

 $ep \rightarrow ep\pi^0$ analysis in Hall A: Comparison with $ep \rightarrow en\pi^+$

VGG: Vanderhaeghen, Guichon, Guidal, Phys. Rev. **D60**, 094017 (1999) VGL: Vanderhaeghen, Guidal, Laget, Phys. Rev. **C57**, 1454 (1998)

6 GeV measurements Highlights: DVCS on longitudinally polarized proton

Longitudinally polarized proton target => GPD H

April 11th 2019

Fair agreement of these GPD models with data

6 GeV measurements

Highlights: $e\vec{p} \rightarrow ep\pi^0$ (longitudinally polarized proton)

CLAS

Target Spin Assymetry, Double Spin Asymmetry [Kim et al.: Phys.Lett. B768 (2017) 168-173]

Curves: calculations with chiral-odd GPDs => mainly contribute to σ_{T} dashed: [S. Goloskokov and P. Kroll, Eur. Phys. J. A 47, (2011) 112] solid: [Goldstein, Gonzalez-Hernandez, Liuti, Phys. Rev. D84, 034007 (2011)] Overall agreement between GGL and data except for $A_{LL}^{cos\phi}$.

More details in Andrey Kim's talk (17:30 today, this session)

6 GeV measurements Highlights / open questions: DVCS on ⁴He

Coherent ⁴**He-DVCS**

A-DVCS

 $\mathsf{GPD}\ H_{\scriptscriptstyle A}$

Hall B 6 GeV

⁴He: spin 0 => One GPD (H_A) to describe the system => *CFF* extracted from BSA (w/o model-dep assumptions)

DVCS/ π^0 measurements at 6 GeV: Hall A setup

DVCS/ π^0 measurements at 6 GeV: Hall B setup

The ALERT detector (just in case)

COMPASS (+HERA) proton tomography (just in case...)

Spin and charge cross section Sum: Proton size $S_{CS,II} \equiv d\sigma(\mu^+) + d\sigma(\mu^-) \rightarrow d\sigma^{DVCS}/dt \sim exp(-B|t|)$ [R. Akhunzyanov et al.,arXiv:1802.02739 [hep-ex]]

Nucleon structure and QCD Nucleon Spin Puzzle

Nucleon spin is more than the sum of its constituents!

April 11th 2019

¹⁹ Orbital Angular Momentum $L_{q,g} => missing piece of spin puzzle$ ³⁸ => needs "3D" parameterization

Nucleon Structure : what we "know"

polarization of quarks; Obtained with polarized ℓ , N

39

Generalized Parton Distributions (GPDs) : '3D' Structure of nucleon

In practice: GPDs encapsulated in Compton Form Factors (CFFs)

Sometimes effective CFFs: combinations of CFFs with same kinematic dependence